In this paper, we introduce the notion of “geodesic cover” for Fuchsian groups, which summons copies of fundamental polygons in the hyperbolic plane to cover pairs of representatives realizing distances in the corresponding hyperbolic surface. Then we use estimates of geodesic-covering numbers to study the distinct distances problem in hyperbolic surfaces. Especially, for from a large class of hyperbolic surfaces, we establish the nearly optimal bound for distinct distances determined by any points in , where is some constant depending only on . In particular, for being modular surface or standard regular of genus , we evaluate explicitly in terms of .
Mots clés : Erdős distinct distances, hyperbolic surface, hyperbolic circle problem, equilateral dimension
Zhipeng Lu 1 ; Xianchang Meng 2
@article{AMBP_2023__30_2_201_0, author = {Zhipeng Lu and Xianchang Meng}, title = {Geodesic covers and {Erd\H{o}s} distinct distances in hyperbolic surfaces}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {201--217}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {2}, year = {2023}, doi = {10.5802/ambp.422}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.422/} }
TY - JOUR AU - Zhipeng Lu AU - Xianchang Meng TI - Geodesic covers and Erdős distinct distances in hyperbolic surfaces JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 201 EP - 217 VL - 30 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.422/ DO - 10.5802/ambp.422 LA - en ID - AMBP_2023__30_2_201_0 ER -
%0 Journal Article %A Zhipeng Lu %A Xianchang Meng %T Geodesic covers and Erdős distinct distances in hyperbolic surfaces %J Annales mathématiques Blaise Pascal %D 2023 %P 201-217 %V 30 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.422/ %R 10.5802/ambp.422 %G en %F AMBP_2023__30_2_201_0
Zhipeng Lu; Xianchang Meng. Geodesic covers and Erdős distinct distances in hyperbolic surfaces. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 201-217. doi : 10.5802/ambp.422. https://ambp.centre-mersenne.org/articles/10.5802/ambp.422/
[1] Embedding of in finite-dimensional Banach spaces, Isr. J. Math., Volume 45 (1983), pp. 265-280 | DOI | MR | Zbl
[2] Pair correlation of hyperbolic lattice angles, Int. J. Number Theory, Volume 10 (2014) no. 8, pp. 1955-1989 | DOI | MR
[3] A sum-product estimate in finite fields, and applications, Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 27-57 | DOI | MR | Zbl
[4] Sur le Gitter Fuchsien, C. R. Acad. Sci. Paris, Volume 214 (1942), pp. 147-149 | MR | Zbl
[5] On sets of distances of points, Am. Math. Mon., Volume 53 (1946), pp. 248-250 | DOI | MR | Zbl
[6] On the Hausdorff dimensions of distance sets, Mathematika, Volume 32 (1985), pp. 206-212 | DOI | MR | Zbl
[7] Polynomial Methods in Combinatorics, University Lecture Series, 64, American Mathematical Society, 2016 | DOI
[8] On Falconer’s distance set problem in the plane, Invent. Math., Volume 219 (2020) no. 3, pp. 779-830 | DOI | MR
[9] On the Erdős distinct distances problem in the plane, Ann. Math., Volume 181 (2015) no. 1, pp. 155-190 | DOI
[10] An Olla-Podrida of open problems, often oddly posed, Am. Math. Mon., Volume 90 (1983), pp. 196-200 | MR
[11] Averages over hyperplanes, sum-product theory in vector spaces over finite fields and the Erdős-Falconer distance conjecture, Trans. Am. Math. Soc., Volume 363 (2011) no. 6, pp. 3255-3275 | DOI | Zbl
[12] Über eine neue Klass automorpher Functionen und eine Gitterpunktproblem in der hyperbolische Ebene, Comment. Math. Helv., Volume 30 (1956), pp. 20-62 | DOI
[13] Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann., Volume 138 (1959), pp. 1-26 | DOI | MR
[14] What is ... Falconer’s conjecture?, Notices Am. Math. Soc., Volume 66 (2019), pp. 552-555 | MR
[15] Erdős distance problem in vector spaces over finite fields, Trans. Am. Math. Soc., Volume 359 (2007), pp. 6127-6142 | DOI | Zbl
[16] Spectral methods of automorphic forms, Graduate Studies in Mathematics, 53, American Mathematical Society, 2002
[17] Fuchsian Groups, University of Chicago Press, 1992
[18] On the pair correlation density for hyperbolic angles, Duke Math. J., Volume 164 (2015) no. 3, pp. 473-509 | MR
[19] Equilateral dimension of the rectilinear space, Des. Codes Cryptography, Volume 21 (2000) no. 1-3, pp. 149-164 | DOI | MR
[20] Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Anal. Appl., Volume 4 (1969), pp. 335-336
[21] Distinct distances on hyperbolic surfaces, Trans. Am. Math. Soc., Volume 375 (2022) no. 3, pp. 3713-3731 | MR
[22] On the number of incidences between points and curves, Comb. Probab. Comput., Volume 7 (1998) no. 1, pp. 121-127 | DOI | MR
[23] A lattice point problem in hyperbolic space, Mathematika, Lond., Volume 22 (1974), pp. 81-88 | DOI | MR | Zbl
[24] The circle problem in the hyperbolic plane, J. Funct. Anal., Volume 121 (1994) no. 1, pp. 78-116 | DOI | MR
[25] On the use of the Klein quadric for geometric incidence problems in two dimensions, SIAM J. Discrete Math., Volume 30 (2016) no. 2, pp. 934-954 | DOI | MR
[26] Göttingen lecture, Collected Works I, Springer, 1989
[27] Distinct distances: open problems and current bounds (2014) | arXiv
[28] Distinct distances in the complex plane, Trans. Am. Math. Soc., Volume 374 (2021) no. 9, pp. 6691-6725 | DOI | MR
[29] Near optimal bounds for the Erdős distinct distances problem in high dimensions, Combinatorica, Volume 28 (2008) no. 1, pp. 113-125 | DOI | Zbl
Cité par Sources :