[Une note sur le spectre d’une fonction rationnelle]
En 2008, Bodin a fourni une approche alternative pour borner l’ordre total de réductibilité d’une fonction rationnelle indécomposable. Sa preuve a utilisé certaines propriétés de dérivation jacobienne. Dans cette note, nous revisitons cette preuve et éliminer l’aspect de dérivation jacobienne. Le nouvel ingrédient de notre présentation est une version du théorème de Lüroth.
In 2008, Bodin provided an alternative approach for bounding the total reducibility order of a non-composite rational function. His proof used some properties of jacobian derivation. In this note, we revisit this proof and eliminate the jacobian derivation aspect. The new ingredient in our presentation is a version of Lüroth’s theorem.
Mots clés : Irreducible polynomials, Indecomposable rational function, Spectrum of a rational function, Lüroth’s theorem
Mohamed Benelmekki 1 ; Salah Najib 2
@article{AMBP_2023__30_2_107_0, author = {Mohamed Benelmekki and Salah Najib}, title = {A note on the spectrum of a rational function}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {107--114}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {2}, year = {2023}, doi = {10.5802/ambp.418}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/} }
TY - JOUR AU - Mohamed Benelmekki AU - Salah Najib TI - A note on the spectrum of a rational function JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 107 EP - 114 VL - 30 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/ DO - 10.5802/ambp.418 LA - en ID - AMBP_2023__30_2_107_0 ER -
%0 Journal Article %A Mohamed Benelmekki %A Salah Najib %T A note on the spectrum of a rational function %J Annales mathématiques Blaise Pascal %D 2023 %P 107-114 %V 30 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/ %R 10.5802/ambp.418 %G en %F AMBP_2023__30_2_107_0
Mohamed Benelmekki; Salah Najib. A note on the spectrum of a rational function. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 107-114. doi : 10.5802/ambp.418. https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/
[1] Reducibility of rational functions in several variables, Isr. J. Math., Volume 164 (2008), pp. 333-348 | DOI | MR
[2] Irreducibility of hypersurfaces, Commun. Algebra, Volume 37 (2009) no. 6, pp. 1884-1900 | DOI | MR | Zbl
[3] Families of polynomials and their specializations, J. Number Theory, Volume 170 (2017), pp. 390-408 | DOI | MR
[4] The Schinzel Hypothesis for Polynomials, Trans. Am. Math. Soc., Volume 373 (2020) no. 12, pp. 8339-8364 | DOI | MR
[5] Noether’s forms for the study of non-composite rational functions and their spectrum, Acta Arith., Volume 147 (2011) no. 3, pp. 217-231 | DOI | MR
[6] Factorization of polynomials, Bull. Pol. Acad. Sci., Math., Volume 40 (1992) no. 1, pp. 45-52 | MR
[7] Algebraic curves. An introduction to algebraic geometry, Addison-Wesley Publishing Group, 1989
[8] Two remarks on polynomials in two variables, Pac. J. Math., Volume 154 (1992) no. 2, pp. 285-295 | DOI | MR | Zbl
[9] Algebraic Geometry, Princeton Mathematical Series, 18, Princeton University Press, 1953 | DOI
[10] Reducibility of polynomials in two variables, J. Algebra, Volume 156 (1993) no. 1, pp. 65-75 | DOI | MR
[11] Sur le spectre d’un polynôme à plusieurs variables, Acta Arith., Volume 114 (2004), pp. 169-181 | DOI | MR | Zbl
[12] Factorisation des polynômes et théorème de Stein, Ph. D. Thesis, University of Lille (2005)
[13] Une généralisation de l’inégalité de Stein-Lorenzini, J. Algebra, Volume 292 (2005) no. 2, pp. 566-573 | DOI | MR
[14] The spectrum of a rational function, Algebra Colloq., Volume 27 (2020) no. 3, pp. 477-482 | DOI | MR
[15] On closed rational functions in several variables, Algebra Discrete Math., Volume 6 (2007) no. 2, pp. 115-124 | MR | Zbl
[16] Reduzibilität ebener Kurven, J. Reine Angew. Math., Volume 369 (1986), pp. 167-191 | MR | Zbl
[17] Polynomials with special regard to reducibility, Cambridge University Press, 2000 | DOI
[18] Basic algebraic geometry 1, Springer, 1994 | DOI
[19] The total reducibility order of a polynomial in two variables, Isr. J. Math., Volume 68 (1989) no. 1, pp. 109-122 | DOI | MR | Zbl
[20] The number of reducible hypersurfaces in a pencil, Invent. Math., Volume 112 (1993), pp. 247-262 | DOI | MR
Cité par Sources :