A note on the spectrum of a rational function
[Une note sur le spectre d’une fonction rationnelle]
Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 107-114.

En 2008, Bodin a fourni une approche alternative pour borner l’ordre total de réductibilité d’une fonction rationnelle indécomposable. Sa preuve a utilisé certaines propriétés de dérivation jacobienne. Dans cette note, nous revisitons cette preuve et éliminer l’aspect de dérivation jacobienne. Le nouvel ingrédient de notre présentation est une version du théorème de Lüroth.

In 2008, Bodin provided an alternative approach for bounding the total reducibility order of a non-composite rational function. His proof used some properties of jacobian derivation. In this note, we revisit this proof and eliminate the jacobian derivation aspect. The new ingredient in our presentation is a version of Lüroth’s theorem.

Publié le :
DOI : 10.5802/ambp.418
Classification : 12E05, 12F20, 11C08
Mots clés : Irreducible polynomials, Indecomposable rational function, Spectrum of a rational function, Lüroth’s theorem

Mohamed Benelmekki 1 ; Salah Najib 2

1 Université Sultan Moulay Slimane Laboratoire de Mathématiques et Applications, FST Campus Mghilla, BP 523, 23000 Béni Mellal MAROC
2 Université Sultan Moulay Slimane, Faculté Polydisciplinaire de Khouribga Laboratoire multidisciplinaire de recherche et d’innovation BP 145, Hay Ezzaytoune, 25000 Khouribga MAROC
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2023__30_2_107_0,
     author = {Mohamed Benelmekki and Salah Najib},
     title = {A note on the spectrum of a rational function},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {107--114},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {30},
     number = {2},
     year = {2023},
     doi = {10.5802/ambp.418},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/}
}
TY  - JOUR
AU  - Mohamed Benelmekki
AU  - Salah Najib
TI  - A note on the spectrum of a rational function
JO  - Annales mathématiques Blaise Pascal
PY  - 2023
SP  - 107
EP  - 114
VL  - 30
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/
DO  - 10.5802/ambp.418
LA  - en
ID  - AMBP_2023__30_2_107_0
ER  - 
%0 Journal Article
%A Mohamed Benelmekki
%A Salah Najib
%T A note on the spectrum of a rational function
%J Annales mathématiques Blaise Pascal
%D 2023
%P 107-114
%V 30
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/
%R 10.5802/ambp.418
%G en
%F AMBP_2023__30_2_107_0
Mohamed Benelmekki; Salah Najib. A note on the spectrum of a rational function. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 2, pp. 107-114. doi : 10.5802/ambp.418. https://ambp.centre-mersenne.org/articles/10.5802/ambp.418/

[1] Arnaud Bodin Reducibility of rational functions in several variables, Isr. J. Math., Volume 164 (2008), pp. 333-348 | DOI | MR

[2] Arnaud Bodin; Pierre Dèbes; Salah Najib Irreducibility of hypersurfaces, Commun. Algebra, Volume 37 (2009) no. 6, pp. 1884-1900 | DOI | MR | Zbl

[3] Arnaud Bodin; Pierre Dèbes; Salah Najib Families of polynomials and their specializations, J. Number Theory, Volume 170 (2017), pp. 390-408 | DOI | MR

[4] Arnaud Bodin; Pierre Dèbes; Salah Najib The Schinzel Hypothesis for Polynomials, Trans. Am. Math. Soc., Volume 373 (2020) no. 12, pp. 8339-8364 | DOI | MR

[5] Laurent Busé; Guillaume Chèze; Salah Najib Noether’s forms for the study of non-composite rational functions and their spectrum, Acta Arith., Volume 147 (2011) no. 3, pp. 217-231 | DOI | MR

[6] Ewa Cygan Factorization of polynomials, Bull. Pol. Acad. Sci., Math., Volume 40 (1992) no. 1, pp. 45-52 | MR

[7] William Fulton Algebraic curves. An introduction to algebraic geometry, Addison-Wesley Publishing Group, 1989

[8] Shulim Kaliman Two remarks on polynomials in two variables, Pac. J. Math., Volume 154 (1992) no. 2, pp. 285-295 | DOI | MR | Zbl

[9] Solomon Lefshetz Algebraic Geometry, Princeton Mathematical Series, 18, Princeton University Press, 1953 | DOI

[10] Dino Lorenzini Reducibility of polynomials in two variables, J. Algebra, Volume 156 (1993) no. 1, pp. 65-75 | DOI | MR

[11] Salah Najib Sur le spectre d’un polynôme à plusieurs variables, Acta Arith., Volume 114 (2004), pp. 169-181 | DOI | MR | Zbl

[12] Salah Najib Factorisation des polynômes P(X 1 ,...,X n )-λ et théorème de Stein, Ph. D. Thesis, University of Lille (2005)

[13] Salah Najib Une généralisation de l’inégalité de Stein-Lorenzini, J. Algebra, Volume 292 (2005) no. 2, pp. 566-573 | DOI | MR

[14] Salah Najib The spectrum of a rational function, Algebra Colloq., Volume 27 (2020) no. 3, pp. 477-482 | DOI | MR

[15] Anatoliy P. Petravchuk; Oleksandr G. Iena On closed rational functions in several variables, Algebra Discrete Math., Volume 6 (2007) no. 2, pp. 115-124 | MR | Zbl

[16] Wolfgang Ruppert Reduzibilität ebener Kurven, J. Reine Angew. Math., Volume 369 (1986), pp. 167-191 | MR | Zbl

[17] Andrzej Schinzel Polynomials with special regard to reducibility, Cambridge University Press, 2000 | DOI

[18] Igor R. Shafarevich Basic algebraic geometry 1, Springer, 1994 | DOI

[19] Yosef Stein The total reducibility order of a polynomial in two variables, Isr. J. Math., Volume 68 (1989) no. 1, pp. 109-122 | DOI | MR | Zbl

[20] Angelo Vistoli The number of reducible hypersurfaces in a pencil, Invent. Math., Volume 112 (1993), pp. 247-262 | DOI | MR

Cité par Sources :