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A note on the spectrum of a rational function

Mohamed Benelmekki
Salah Najib

Abstract

In 2008, Bodin provided an alternative approach for bounding the total reducibility order of a
non-composite rational function. His proof used some properties of jacobian derivation. In this note, we
revisit this proof and eliminate the jacobian derivation aspect. The new ingredient in our presentation is a
version of Lüroth’s theorem.

Une note sur le spectre d’une fonction rationnelle
Résumé

En 2008, Bodin a fourni une approche alternative pour borner l’ordre total de réductibilité d’une
fonction rationnelle indécomposable. Sa preuve a utilisé certaines propriétés de dérivation jacobienne.
Dans cette note, nous revisitons cette preuve et éliminer l’aspect de dérivation jacobienne. Le nouvel
ingrédient de notre présentation est une version du théorème de Lüroth.

1. Introduction

Let 𝐾 be a field. Let 𝑓 = 𝑝

𝑞
∈ 𝐾 (𝑥) be a rational function, where 𝑥 = (𝑥1, . . . , 𝑥𝑛), 𝑛 ≥ 2

and 𝑝, 𝑞 ∈ 𝐾 [𝑥] such that gcd(𝑝, 𝑞) = 1. We recall that deg 𝑓 = max{deg 𝑝, deg 𝑞};
and if it is non-constant, the rational function 𝑓 is said to be composite if there exist
𝑢(𝑇) ∈ 𝐾 (𝑇), 𝐻 (𝑥) ∈ 𝐾 (𝑥) such that 𝑓 = 𝑢(𝐻) with deg 𝑢 ≥ 2.

We associate to the rational function 𝑓 = 𝑝

𝑞
∈ 𝐾 (𝑥), the pencil 𝑝−𝜆𝑞,𝜆 ∈ 𝐾 = 𝐾∪{∞}

and by convention 𝜆 = ∞ whenever 𝑝 − 𝜆𝑞 = 𝑞. The set of 𝜆 ∈ 𝐾 for which 𝑝 − 𝜆𝑞 is
reducible is called the spectrum of 𝑓 and is denoted by 𝜎( 𝑓 ), i.e.

𝜎( 𝑓 ) =
{
𝜆 ∈ 𝐾 : 𝑝 − 𝜆𝑞 is reducible over 𝐾

}
.

For each 𝜆 ∈ 𝜎( 𝑓 ), write

𝑝(𝑥) − 𝜆𝑞(𝑥) =
𝑛(𝜆)∏
𝑖=1

𝐹
𝑘𝜆,𝑖
𝜆,𝑖

(𝑥)

Keywords: Irreducible polynomials, Indecomposable rational function, Spectrum of a rational function, Lüroth’s
theorem.
2020 Mathematics Subject Classification: 12E05, 12F20, 11C08.
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where 𝐹𝜆,𝑖 is irreducible over 𝐾 and 𝑘𝜆,𝑖 ∈ Z+ for all 𝑖 = 1, . . . , 𝑛(𝜆). The number
𝜌𝜆 ( 𝑓 ) = 𝑛(𝜆) − 1 is called the reducibility order of 𝑓 at 𝜆, and the number 𝜌( 𝑓 ) =∑
𝜆∈𝜎 ( 𝑓 ) 𝜌𝜆 ( 𝑓 ) is called the total reducibility order of 𝑓 .
By an irreducible polynomial over 𝐾 we mean a non-constant polynomial 𝐹 ∈ 𝐾 [𝑥]

such that 𝐹 = 𝐺𝐻 implies that either 𝐺 ∈ 𝐾∗ = 𝐾 \ {0} or 𝐻 ∈ 𝐾∗; otherwise we say
that 𝐹 is reducible over 𝐾 .

It is well-known that 𝜎( 𝑓 ) is finite if and only if 𝑓 is non-composite; see for example [5,
Corollary 15], [1, Corollary 2.3] and references therein. Therefore, it is natural to look for
a bound on the cardinality of 𝜎( 𝑓 ) when 𝑓 is non-composite. In this context, Ruppert [16]
proved that there are at most (deg 𝑓 )2−1 reducible curves in the pencil 𝑝−𝜆𝑞, 𝜆 ∈ C∪{∞}
when the generic curve in this pencil is irreducible of degree deg 𝑓 . For 𝑓 ∈ 𝐾 (𝑋,𝑌 ),
where 𝐾 is an algebraically closed field of any characteristic, Lorenzini [10] showed,
under some geometric hypotheses on the pencil 𝑝 − 𝜆𝑞, that 𝜌( 𝑓 ) < (deg 𝑓 )2. This has
been extended by Vistoli [20] to a pencil in several variables for an algebraically closed
field of characteristic zero. The polynomial case (𝑞 = 1) has been considered, in particular
by Cygan [6], Kaliman [8], Najib [11, 12] and Stein [19]. It has been proved that, for an
algebraically closed field 𝐾 of characteristic zero: if 𝑃 ∈ 𝐾 [𝑋,𝑌 ] is a non-composite
polynomial, then 𝜌(𝑃) ≤ deg 𝑃 − 1. Later Lorenzini [10] showed (for an algebraically
closed field of any characteristic and for two variables) that:

𝜌(𝑃) ≤ min
𝜆∈𝜎 (𝑃)

{
𝑛(𝜆)∑︁
𝑖=1

deg( 𝑓𝜆,𝑖)
}
− 1 ≤ deg 𝑃 − 1,

where the 𝑓𝜆,𝑖 are the irreducible distinct factors of 𝑃 − 𝜆 for 𝜆 ∈ 𝜎(𝑃). This inequality
has been generalized by Najib [13] for an arbitrary field of any characteristic and for any
number of variables.

Following the works of Lorenzini and Ruppert, in 2008, Bodin [1], by using some
results about the kernel of the jacobian derivations, provided an alternative approach
leading to the following bound.

Theorem 1.1. Let 𝐾 be an algebraically closed field of characteristic 0. If 𝑓 ∈ 𝐾 (𝑋,𝑌 )
is non-composite then 𝜌( 𝑓 ) < (deg 𝑓 )2 + deg 𝑓 .

Some variants of these results have been extensively studied; see for example [2], [3],
[4, Section 5.5], [5], [14] and [15].

In this note, we revisit the proof of Bodin and eliminate the jacobian derivation aspect.
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2. Preliminary Lemmas

Our proof of Theorem 1.1 uses this new ingredient; it is a variant of Lüroth’s theorem (for
𝑛 = 2).

Lemma 2.1. Let 𝐾 be an algebraically closed field of characteristic 0.
If 𝐾 ⊂ 𝐿 ⊂ 𝐾 (𝑋,𝑌 ) and tr. deg𝐾 𝐿 = 1, then 𝐿 = 𝐾 (𝑔) where 𝑔 ∈ 𝐾 (𝑋,𝑌 ).

Proof. We adapt the proof of Theorem 3 [17, Section 1.2] in our case 𝑛 = 2 and with 𝐾
infinite of characteristic 0.

By Theorem 1 of [17, Section 1.2], there exist 𝑔1, 𝑔2 ∈ 𝐾 (𝑋,𝑌 ) such that 𝐿 = 𝐾 (𝑔1, 𝑔2).
Since 𝐾 ⊂ 𝐿 ⊂ 𝐾 (𝑋,𝑌 ), then

𝐾 (𝑌 ) ⊂ 𝐿 (𝑌 ) ⊂ 𝐾 (𝑋,𝑌 ).

By Lüroth’s theorem (see [17, Section 1.1; Theorem 2])

𝐿 (𝑌 ) = 𝐾 (ℎ,𝑌 ) where ℎ ∈ 𝐾 (𝑋,𝑌 ) \ 𝐾 (𝑌 ).

Thus 𝐾 (ℎ,𝑌 ) = 𝐾 (𝑔1, 𝑔2, 𝑌 ), and hence

𝑔1 = 𝑓1 (ℎ,𝑌 ), 𝑔2 = 𝑓2 (ℎ,𝑌 ) where 𝑓1, 𝑓2 ∈ 𝐾 (𝑇1, 𝑇2),

and ℎ = 𝜙(𝑔1, 𝑔2, 𝑌 ) where 𝜙 ∈ 𝐾 (𝑇1, 𝑇2, 𝑌 ). It follows that

𝑔1 = 𝑓1 (𝜙(𝑔1, 𝑔2, 𝑌 ), 𝑌 ), 𝑔2 = 𝑓2 (𝜙(𝑔1, 𝑔2, 𝑌 ), 𝑌 ).

Since 𝐾 is infinite, we may choose a value 𝑦0 ∈ 𝐾 such that, after substitution 𝑌 = 𝑦0, the
rational functions 𝑓1 (𝜙(𝑔1, 𝑔2, 𝑦0), 𝑦0) and 𝑓2 (𝜙(𝑔1, 𝑔2, 𝑦0), 𝑦0) make sense. Since

𝑔𝑖 = 𝑓𝑖 (𝜙(𝑔1, 𝑔2, 𝑦0), 𝑦0), for 𝑖 = 1, 2,

we conclude that the rational function 𝜙(𝑔1, 𝑔2, 𝑦0) generates the extension 𝐿/𝐾 . □

Let 𝐾 be an algebraically closed field of characteristic 0. Let 𝑓 =
𝑝

𝑞
∈ 𝐾 (𝑥) be a

non-constant rational function and 𝜆1, . . . , 𝜆𝑚 ∈ 𝐾. We denote by 𝐺 ( 𝑓 ;𝜆1, . . . , 𝜆𝑚)
the multiplicative group generated by all non-associate divisors of the polynomials
𝑝 − 𝜆𝑖𝑞, (𝑖 = 1, . . . , 𝑚). Let 𝑑 ( 𝑓 ) = (deg 𝑓 )2 + deg 𝑓 .

Our proof of Theorem 1.1 also uses the following lemma, which states a sufficient
condition for the algebraic dependence of 𝑓 and some element of 𝐺 ( 𝑓 ;𝜆1, . . . , 𝜆𝑚).

Lemma 2.2. Let 𝐹1, . . . , 𝐹𝑟 ∈ 𝐺 ( 𝑓 ;𝜆1, . . . , 𝜆𝑚). If 𝑟 ≥ 𝑑 ( 𝑓 ) then there exists a non-
trivial collection of integers 𝑚1, . . . , 𝑚𝑟 , such that the rational function

∏𝑟
𝑖=1 𝐹

𝑚𝑖

𝑖
and 𝑓

are algebraically dependent over 𝐾 .
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This statement is the same as [1, Lemma 3.3], but here the conclusion “the rational
function

∏𝑟
𝑖=1 𝐹

𝑚𝑖

𝑖
and 𝑓 are algebraically dependent over 𝐾” replaces the equivalent one

“𝑔 =
∏𝑟
𝑖=1 𝐹

𝑚𝑖

𝑖
∈ 𝐶 𝑓 ” there 1. The proof of Bodin is based on other stataments which use

some properties of jacobian derivations and their kernels. For a self-contained argument
and for the convenience of the reader, in the last section, we give a proof that does not use
the jacobian derivation aspect.

3. Proof of Theorem 1.1

Proof. Let 𝑓 =
𝑝

𝑞
where 𝑝, 𝑞 ∈ 𝐾 [𝑋,𝑌 ] be coprime. Assume that 𝑓 (𝑋,𝑌 ) is non-

composite and let 𝜆1, . . . , 𝜆𝑟 be the spectral values of 𝑓 . Now, we assume that 𝜌( 𝑓 ) =∑𝑟
𝑗=1 𝜌𝜆 𝑗

( 𝑓 ) ≥ 𝑑 ( 𝑓 ). For all 𝑗 = 1, . . . , 𝑟, let 𝑝 − 𝜆 𝑗𝑞 =
∏𝑛 𝑗

𝑖=1 𝐹
𝑘 𝑗,𝑖

𝑗 ,𝑖
the decomposition

of 𝑝 − 𝜆 𝑗𝑞 into the product of irreducible factors, where 𝑛 𝑗 denotes 𝑛(𝜆 𝑗 ). Consider the
collection of polynomials:

{𝐹1,1, . . . , 𝐹1,𝑛1−1, . . . , 𝐹𝑟 ,1, . . . , 𝐹𝑟 ,𝑛𝑟−1}.

Note that all these polynomials are elements of 𝐺 ( 𝑓 ;𝜆1, . . . , 𝜆𝑟 ) and their number is∑𝑟
𝑗=1 (𝑛 𝑗 − 1) = ∑𝑟

𝑗=1 𝜌𝜆 𝑗
( 𝑓 ) ≥ 𝑑 ( 𝑓 ). Hence, by Lemma 2.2, there exists a non-trivial

collection of integers

{𝑚1,1, . . . , 𝑚1,𝑛1−1, . . . , 𝑚𝑟 ,1, . . . , 𝑚𝑟 ,𝑛𝑟−1}

such that 𝑓 and the rational function

𝑔 =

𝑟∏
𝑗=1

𝑛 𝑗−1∏
𝑖=1

𝐹
𝑚 𝑗,𝑖

𝑗 ,𝑖
(3.1)

are algebraically dependent over 𝐾 .
By Lemma 2.1, for 𝐿 = 𝐾 ( 𝑓 , 𝑔), there exists ℎ ∈ 𝐾 (𝑋,𝑌 )\𝐾 such that 𝐿 = 𝐾 (ℎ). Thus

𝑓 , 𝑔 ∈ 𝐾 (ℎ). Since the rational function 𝑓 is non-composite, it follows that 𝑓 = 𝛼1ℎ+𝛽1
𝛼2ℎ+𝛽2

,
with 𝛼1, 𝛽1, 𝛼2, 𝛽2 ∈ 𝐾 and 𝛼1 ≠ 0 or 𝛼2 ≠ 0. Thus 𝐾 (ℎ) = 𝐾 ( 𝑓 ), and therefore
𝑔 ∈ 𝐾 ( 𝑓 ).

Now, we write 𝑔 =
𝑢( 𝑓 )
𝑣 ( 𝑓 ) , where 𝑢, 𝑣 ∈ 𝐾 [𝑇] are such that gcd(𝑢, 𝑣) = 1. Let 𝜇1, . . . , 𝜇𝑘

be the roots of 𝑢 and 𝜇𝑘+1, . . . , 𝜇ℓ those of 𝑣. Hence

𝑔 =
𝑢
( 𝑝
𝑞

)
𝑣
( 𝑝
𝑞

) = 𝜂.

∏𝑘
𝑖=1

( 𝑝
𝑞
− 𝜇𝑖

)∏ℓ
𝑖=𝑘+1

( 𝑝
𝑞
− 𝜇𝑖

) , 𝜂 ∈ 𝐾 \ {0},

1where 𝐶 𝑓 is the kernel of the jacobian derivation of 𝐾 (𝑋,𝑌 ) associated to 𝑓 .
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thus

𝑔 = 𝜂.𝑞2𝑘−ℓ
∏𝑘
𝑖=1 (𝑝 − 𝜇𝑖𝑞)∏ℓ
𝑖=𝑘+1 (𝑝 − 𝜇𝑖𝑞)

(3.2)

Note that, for every ( 𝑗0, 𝑖0) such that 𝑚 𝑗0 ,𝑖0 ≠ 0, we obtain that the factor 𝐹𝑗0 ,𝑖0 divides
one of the polynomials 𝑝 − 𝜇𝑖𝑞, 𝑖 = 1, . . . , ℓ (by comparing the decompositions (3.1)
and (3.2)). Since 𝐹𝑗0 ,𝑖0 divides 𝑝 − 𝜆 𝑗0𝑞, we deduce that 𝜆 𝑗0 ∈ {𝜇1, . . . , 𝜇ℓ } and hence,
by (3.2), that 𝑝 − 𝜆 𝑗0𝑞 is a factor of the numerator or the denominator of 𝑔. Thus for
( 𝑗0, 𝑖0) = ( 𝑗0, 𝑛 𝑗0 ), we obtain that the irreducible divisor 𝐹𝑗0 ,𝑛 𝑗0

of 𝑝−𝜆 𝑗0𝑞 should appear
in the decomposition (3.1), which contradicts our choice of the collection:

{𝐹1,1, . . . , 𝐹1,𝑛1−1, . . . , 𝐹𝑟 ,1, . . . , 𝐹𝑟 ,𝑛𝑟−1}.

Consequently, 𝜌( 𝑓 ) < 𝑑 ( 𝑓 ). □

4. Proof of Lemma 2.2

First part. We show that it suffices to prove the existence of an 𝑟−tuple (𝑚1, . . . , 𝑚𝑟 ) of
integers (not all equal to zero) such that the rational function 𝑔 =

∏𝑟
𝑖=1 𝐹

𝑚𝑖

𝑖
is constant

on infinitely many irreducible components of the curves {𝑝 − 𝜆𝑞 = 0}, 𝜆 ∈ 𝐾 .
Indeed, let (𝑉𝑛)𝑛>0 be an infinite sequence of irreducible components of the curves

{𝑝 − 𝜆𝑞 = 0} (𝜆 ∈ 𝐾) such that the function 𝑔 is constant on them. We denote by
{𝑝 − 𝜆𝑛𝑞 = 0} the curve of which 𝑉𝑛 is a component. As 𝑔 is constant on 𝑉𝑛 then the
determinant Jac( 𝑓 , 𝑔) of the jacobian matrix of 𝑓 and 𝑔 is zero on 𝑉𝑛: this follows, for
example, by writing 𝐾 (𝑉𝑛) = 𝐾 (𝑋, 𝑦) with 𝑦 a solution of 𝑝(𝑋, 𝑦) − 𝜆𝑛𝑞(𝑋, 𝑦) = 0, by
developing 𝜕

𝜕𝑋
(𝑔(𝑋, 𝑦)) = 0 and using d𝑦

d𝑋 = − 𝜕 𝑓
𝜕𝑋

/ 𝜕 𝑓
𝜕𝑦

.
Now let Jac( 𝑓 , 𝑔) = 𝑁 (𝑋,𝑌 )

𝐷 (𝑋,𝑌 ) where 𝑁, 𝐷 are coprime polynomials in 𝐾 [𝑋,𝑌 ].
The Zariski closed set Z(𝑁) = {(𝑥, 𝑦) ∈ 𝐾2/ 𝑁 (𝑥, 𝑦) = 0} contains infinitely many

irreducible disjoint components 𝑉𝑛. So 𝑁 is the zero polynomial and Jac( 𝑓 , 𝑔) = 0.
Moreover by a classical result (see for Example 11.4 of [9, p. 12], applied with

Φ = 𝐾 (𝑋,𝑌 ), 𝑚 = 𝑛 = 2, 𝛽1 = 𝑓 and 𝛽2 = 𝑔), it follows that the two rational functions 𝑓
and 𝑔 are algebraically dependent over 𝐾 .

Second part. This part largely reuses the ideas of [1, proof of Lemma 3.3]. Here we
prove that there exists an 𝑟-tuple (𝑚1, . . . , 𝑚𝑟 ) of integers (not all equal to zero) such
that the function 𝑔 =

∏𝑟
𝑖=1 𝐹

𝑚𝑖

𝑖
is constant on infinitely many irreducible components of

the curves {𝑝 − 𝜆𝑞 = 0}, 𝜆 ∈ 𝐾 .
Let 𝜆 ∉ {𝜆1, . . . , 𝜆𝑚}, 𝑆 be an irreducible component of {𝑝 − 𝜆𝑞 = 0} and 𝑆 be the

projective closure of 𝑆.
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The zeroes and poles of each 𝐹𝑖 (𝑖 = 1, . . . , 𝑟) restricted to 𝑆 are among the points at
infinity of 𝑆 or in the intersection 𝑆 ∩Z(𝐹𝑖) ⊂ Z(𝑝) ∩ Z(𝑞).

Let 𝑛 : 𝑆𝜈 → 𝑆 be a normalization of 𝑆; the curve 𝑆𝜈 is a smooth projective model of
𝑆. Denote by 𝑡1, . . . , 𝑡ℓ the points in the inverse image 𝑛−1 (𝑆 \ 𝑆). Their number satisfies
ℓ ≤ deg(𝑆) ≤ deg( 𝑓 ).

At a point 𝑡 ∈ Z(𝑝) ∩ Z(𝑞), the number of points of 𝑛−1 (𝑡) is the number of local
branches of 𝑆 at 𝑡, so is less than or equal to the order (or multiplicity) ord𝑡 (𝑆) of 𝑆 at
point 𝑡 (see for example [18, Chapter II, Section 5.3]). Consequently

#𝑛−1 (𝑡) ≤ ord𝑡 (𝑆) ≤ ord𝑡 Z(𝑝 − 𝜆𝑞) ≤ ord𝑡 Z(𝑝 − 𝜆𝑞). ord𝑡 Z(𝑝)
≤ mult𝑡 (𝑝 − 𝜆𝑞, 𝑝) = mult𝑡 (𝑝, 𝑞),

where mult𝑡 (𝑝, 𝑞) is the multiplicity of the intersection of the two curves defined by 𝑝
and 𝑞 at point 𝑡 (see for example [7, Chapter 3]). Then by Bézout theorem, we obtain:∑︁

𝑡∈Z(𝑝)∩Z(𝑞)
#𝑛−1 (𝑡) ≤

∑︁
𝑡∈Z(𝑝)∩Z(𝑞)

mult𝑡 (𝑝, 𝑞) ≤ deg 𝑝. deg 𝑞 ≤ (deg( 𝑓 ))2 .

Denote by 𝑡ℓ+1, . . . , 𝑡𝑘 the points in the inverse image 𝑛−1 (⋃𝑟
𝑖=1 𝑆 ∩Z(𝐹𝑖)). The above

inequality shows that the number 𝑘 − ℓ of these points is less than or equal (deg( 𝑓 ))2.
Notice that 𝑘 ≤ deg( 𝑓 ) + (deg( 𝑓 ))2 = 𝑑 ( 𝑓 ).

Let 𝜈𝑖, 𝑗 be the order of 𝐹𝑖 at point 𝑡 𝑗 (for 𝑖 = 1, . . . , 𝑟 and 𝑗 = 1, . . . , 𝑘) and consider
the matrix M = (𝜈𝑖, 𝑗 ). As the degree of the divisor (𝐹𝑖) is zero (seen over 𝑆𝜈) then∑𝑘
𝑗=1 𝜈𝑖, 𝑗 = 0 for all 𝑖 = 1, . . . , 𝑟, which means that the columns of M are linearly

dependent. Thus rg(M) < 𝑘 ≤ 𝑑 ( 𝑓 ). Moreover by hypothesis 𝑟 ≥ 𝑑 ( 𝑓 ), the rows of M
are linearly dependent. Then there exists an 𝑟−tuple (𝑚1 (𝜆, 𝑆), . . . , 𝑚𝑟 (𝜆, 𝑆)) of integers
(not all equal to zero) such that

𝑟∑︁
𝑖=1

𝑚𝑖 (𝜆, 𝑆)𝜈𝑖, 𝑗 = 0, 𝑗 = 1, . . . , 𝑘 .

Consider now the function 𝑔𝜆,𝑆 =
∏𝑟
𝑖=1 𝐹

𝑚𝑖 (𝜆,𝑆)
𝑖

.
This function is regular and does not have zeroes on 𝑆. Moreover it does not have

zeroes or poles at the points 𝑡1, . . . , 𝑡𝑘 , since
∑𝑟
𝑖=1 𝑚𝑖 (𝜆, 𝑆)𝜈𝑖, 𝑗 = 0 (for all 𝑗 = 1, . . . , 𝑘).

Then the function 𝑔𝜆,𝑆 is constant on 𝑆.

Conclusion. for any choice of 𝑡 and 𝑆 as above, there exists (𝑚1 (𝜆, 𝑆), . . . , 𝑚𝑟 (𝜆, 𝑆)) ∈
Z𝑟 \ {(0, . . . , 0)} such that the rational function 𝑔𝜆,𝑆 =

∏𝑟
𝑖=1 𝐹

𝑚𝑖 (𝜆,𝑆)
𝑖

is constant on
the irreducible component 𝑆. Since, the field 𝐾 is supposed uncountable, there exists
infinitely many (𝜆, 𝑆) for which the 𝑟−tuple (𝑚1 (𝜆, 𝑆), . . . , 𝑚𝑟 (𝜆, 𝑆)) takes the same
value (𝑚1, . . . , 𝑚𝑟 ). Consequently, the rational function 𝑔 =

∏𝑟
𝑖=1 𝐹

𝑚𝑖

𝑖
is constant on the

corresponding components. □
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Remark 4.1. We note that the case of several variables (𝑛 ≥ 3) is explained in [1, Section 5].
This case is based on a result which claims that the irreducibility and the degree of
a family of polynomials remain constant after a generic linear change of coordinates;
see [13, Proposition 1].
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