[Cellules couplées]
Un couplage (total) entre les cellules d’une variété triangulée peut être pensé comme une version combinatoire, discrète, d’un champ de vecteurs non singulier. Cette note décrit plusieurs méthodes pour construire de tels couplages.
A (total) matching of the cells of a triangulated manifold can be thought as a combinatorial or discrete version of a nonsingular vector field. This note gives several methods for constructing such matchings.
Keywords: Matching, Triangulation, Discrete vector field
Mot clés : Couplage, Triangulation, Champ de vecteurs discret
Gaël Meigniez 1
@article{AMBP_2023__30_1_97_0, author = {Ga\"el Meigniez}, title = {Matching {Cells}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {97--106}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {1}, year = {2023}, doi = {10.5802/ambp.417}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/} }
TY - JOUR AU - Gaël Meigniez TI - Matching Cells JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 97 EP - 106 VL - 30 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/ DO - 10.5802/ambp.417 LA - en ID - AMBP_2023__30_1_97_0 ER -
%0 Journal Article %A Gaël Meigniez %T Matching Cells %J Annales mathématiques Blaise Pascal %D 2023 %P 97-106 %V 30 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/ %R 10.5802/ambp.417 %G en %F AMBP_2023__30_1_97_0
Gaël Meigniez. Matching Cells. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 97-106. doi : 10.5802/ambp.417. https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/
[1] Extending Triangulations, Proc. Am. Math. Soc., Volume 18 (1967), pp. 701-704 | DOI | MR | Zbl
[2] Round Handles and Non-Singular Morse-Smale Flows, Ann. Math., Volume 102 (1975) no. 1, pp. 41-54 | DOI | MR | Zbl
[3] Theoretical improvements in algorithmic efficiency for network flow problems, J. Assoc. Comput. Mach., Volume 19 (1972) no. 2, pp. 248-264 | DOI | Zbl
[4] Maximal flow through a network, Can. J. Math., Volume 8 (1956), pp. 399-404 | DOI | MR
[5] Combinatorial vector fields and dynamical systems, Math. Z., Volume 228 (1998) no. 4, pp. 629-681 | MR | Zbl
[6] Morse theory for cell complexes, Adv. Math., Volume 134 (1998) no. 1, pp. 90-145 | DOI | MR | Zbl
[7] Some applications of combinatorial differential topology, Graphs and patterns in mathematics and theoretical physics (Proceedings of Symposia in Pure Mathematics), Volume 73, American Mathematical Society, 2005, pp. 281-313 | DOI | MR | Zbl
[8] Topics in combinatorial differential topology and geometry, Geometric combinatorics (IAS/Park City Mathematics Series), Volume 13, American Mathematical Society, 2007, pp. 133-205 | DOI | MR | Zbl
[9] Combinatorial realization of the Thom-Smale complex via discrete Morse theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 9 (2010) no. 2, pp. 229-252 | Numdam | MR | Zbl
[10] On Representatives of Subsets, J. Lond. Math. Soc., Volume 10 (1935) no. 1, pp. 26-30 | DOI | MR | Zbl
[11] The theory of foliations of codimension greater than one, Comment. Math. Helv., Volume 49 (1974), pp. 214-231 | DOI | MR | Zbl
Cité par Sources :