Matching Cells
[Cellules couplées]
Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 97-106.

Un couplage (total) entre les cellules d’une variété triangulée peut être pensé comme une version combinatoire, discrète, d’un champ de vecteurs non singulier. Cette note décrit plusieurs méthodes pour construire de tels couplages.

A (total) matching of the cells of a triangulated manifold can be thought as a combinatorial or discrete version of a nonsingular vector field. This note gives several methods for constructing such matchings.

Publié le :
DOI : 10.5802/ambp.417
Classification : 05C70, 05E45, 37C10, 37F20, 57Q15
Keywords: Matching, Triangulation, Discrete vector field
Mot clés : Couplage, Triangulation, Champ de vecteurs discret

Gaël Meigniez 1

1 Université d’Aix-Marseille Centre de Mathématiques et d’Informatique Technopôle de Château-Gombert 39, rue Frédéric Joliot-Curie 13453 MARSEILLE Cedex 13 FRANCE
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2023__30_1_97_0,
     author = {Ga\"el Meigniez},
     title = {Matching {Cells}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {97--106},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {30},
     number = {1},
     year = {2023},
     doi = {10.5802/ambp.417},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/}
}
TY  - JOUR
AU  - Gaël Meigniez
TI  - Matching Cells
JO  - Annales mathématiques Blaise Pascal
PY  - 2023
SP  - 97
EP  - 106
VL  - 30
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/
DO  - 10.5802/ambp.417
LA  - en
ID  - AMBP_2023__30_1_97_0
ER  - 
%0 Journal Article
%A Gaël Meigniez
%T Matching Cells
%J Annales mathématiques Blaise Pascal
%D 2023
%P 97-106
%V 30
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/
%R 10.5802/ambp.417
%G en
%F AMBP_2023__30_1_97_0
Gaël Meigniez. Matching Cells. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 97-106. doi : 10.5802/ambp.417. https://ambp.centre-mersenne.org/articles/10.5802/ambp.417/

[1] Mark Armstrong Extending Triangulations, Proc. Am. Math. Soc., Volume 18 (1967), pp. 701-704 | DOI | MR | Zbl

[2] Daniel Asimov Round Handles and Non-Singular Morse-Smale Flows, Ann. Math., Volume 102 (1975) no. 1, pp. 41-54 | DOI | MR | Zbl

[3] Jack Edmonds; Richard M. Karp Theoretical improvements in algorithmic efficiency for network flow problems, J. Assoc. Comput. Mach., Volume 19 (1972) no. 2, pp. 248-264 | DOI | Zbl

[4] Lester R. Ford; Delbert R. Fulkerson Maximal flow through a network, Can. J. Math., Volume 8 (1956), pp. 399-404 | DOI | MR

[5] Robin Forman Combinatorial vector fields and dynamical systems, Math. Z., Volume 228 (1998) no. 4, pp. 629-681 | MR | Zbl

[6] Robin Forman Morse theory for cell complexes, Adv. Math., Volume 134 (1998) no. 1, pp. 90-145 | DOI | MR | Zbl

[7] Robin Forman Some applications of combinatorial differential topology, Graphs and patterns in mathematics and theoretical physics (Proceedings of Symposia in Pure Mathematics), Volume 73, American Mathematical Society, 2005, pp. 281-313 | DOI | MR | Zbl

[8] Robin Forman Topics in combinatorial differential topology and geometry, Geometric combinatorics (IAS/Park City Mathematics Series), Volume 13, American Mathematical Society, 2007, pp. 133-205 | DOI | MR | Zbl

[9] Étienne Gallais Combinatorial realization of the Thom-Smale complex via discrete Morse theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 9 (2010) no. 2, pp. 229-252 | Numdam | MR | Zbl

[10] Philip Hall On Representatives of Subsets, J. Lond. Math. Soc., Volume 10 (1935) no. 1, pp. 26-30 | DOI | MR | Zbl

[11] William Thurston The theory of foliations of codimension greater than one, Comment. Math. Helv., Volume 49 (1974), pp. 214-231 | DOI | MR | Zbl

Cité par Sources :