In this paper, we discuss a relationship between the chirality of knots and higher-dimensional twisted Alexander polynomials associated with holonomy representations of hyperbolic -cone-manifolds. In particular, we provide a new necessary condition for a knot, that appears in a hyperbolic -cone-manifold of finite volume as a singular set, to be amphicheiral. Moreover, we can detect the chirality of hyperbolic twist knots, according to our criterion, using low-dimensional irreducible representations.
Mots clés : Twisted Alexander polynomial, chirality, hyperbolic 3-cone-manifold, twist knot
Hiroshi Goda 1 ; Takayuki Morifuji 2
@article{AMBP_2023__30_1_75_0, author = {Hiroshi Goda and Takayuki Morifuji}, title = {Twisted {Alexander} polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {75--95}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {1}, year = {2023}, doi = {10.5802/ambp.416}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.416/} }
TY - JOUR AU - Hiroshi Goda AU - Takayuki Morifuji TI - Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 75 EP - 95 VL - 30 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.416/ DO - 10.5802/ambp.416 LA - en ID - AMBP_2023__30_1_75_0 ER -
%0 Journal Article %A Hiroshi Goda %A Takayuki Morifuji %T Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds %J Annales mathématiques Blaise Pascal %D 2023 %P 75-95 %V 30 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.416/ %R 10.5802/ambp.416 %G en %F AMBP_2023__30_1_75_0
Hiroshi Goda; Takayuki Morifuji. Twisted Alexander polynomials, chirality, and local deformations of hyperbolic 3-cone-manifolds. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 75-95. doi : 10.5802/ambp.416. https://ambp.centre-mersenne.org/articles/10.5802/ambp.416/
[1] Geometrization of -dimensional orbifolds, Ann. Math., Volume 162 (2005) no. 1, pp. 195-250 | DOI | MR | Zbl
[2] Geometrization of 3-orbifolds of cyclic type. Appendix A by Michael Heusener and Porti, Astérisque, 272, Société Mathématique de France, 2001, vi+208 pages (Appendix A by Michael Heusener and Porti) | Numdam | Zbl
[3] Non abelian Reidemeister torsion and volume form on the -representation space of knot groups, Ann. Inst. Fourier, Volume 55 (2005) no. 5, pp. 1685-1734 | DOI | MR | Zbl
[4] Twisted Alexander invariant and nonabelian Reidemeister torsion for hyperbolic three dimensional manifolds with cusps (2009) | arXiv
[5] Twisted Alexander polynomials of hyperbolic knots, Exp. Math., Volume 21 (2012) no. 4, pp. 329-352 | DOI | MR | Zbl
[6] Poincaré duality and degrees of twisted Alexander polynomials, Indiana Univ. Math. J., Volume 61 (2012) no. 1, pp. 147-192 | Zbl
[7] A survey of twisted Alexander polynomials, The Mathematics of Knots: Theory and Application (Markus Banagl; Denis Vogel, eds.) (Contributions in Mathematical and Computational Sciences), Volume 1, Springer, 2010, pp. 45-94 | Zbl
[8] Twisted Alexander invariants and hyperbolic volume, Proc. Japan Acad., Ser. A, Volume 93 (2017) no. 7, pp. 61-66 | MR | Zbl
[9] Metabelian representations, twisted Alexander polynomials, knot slicing, and mutation, Math. Z., Volume 265 (2010) no. 4, pp. 925-949 | DOI | MR | Zbl
[10] On a remarkable polyhedron geometrizing the figure eight knot cone manifolds, J. Math. Sci., Tokyo, Volume 2 (1996) no. 3, pp. 501-561 | MR | Zbl
[11] Twisted Alexander polynomials of periodic knots, Algebr. Geom. Topol., Volume 6 (2006), pp. 145-169 | DOI | MR | Zbl
[12] Trace fields of twist knots, J. Knot Theory Ramifications, Volume 10 (2001) no. 4, pp. 625-639 | DOI | MR | Zbl
[13] A formula for the -polynomial of twist knots, J. Knot Theory Ramifications, Volume 13 (2004) no. 2, pp. 193-209 | DOI | MR | Zbl
[14] Twisted knot polynomials: inversion, mutation and concordance, Topology, Volume 38 (1999) no. 3, pp. 663-671 | DOI | MR | Zbl
[15] Twisted Alexander polynomial and Reidemeister torsion, Pac. J. Math., Volume 174 (1996) no. 2, pp. 431-442 | DOI | MR | Zbl
[16] Divisibility of twisted Alexander polynomials and fibered knots, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (2005), pp. 179-186 | Numdam | MR | Zbl
[17] Deformations of hyperbolic -cone-manifolds, J. Differ. Geom., Volume 49 (1998) no. 3, pp. 469-516 | MR | Zbl
[18] Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin., Engl. Ser., Volume 17 (2001) no. 3, pp. 361-380 | MR | Zbl
[19] Volumes and degeneration of cone-structures on the figure-eight knot, Tokyo J. Math., Volume 29 (2006) no. 2, pp. 445-464 | MR | Zbl
[20] Twisted cohomology for hyperbolic three manifolds, Osaka J. Math., Volume 49 (2012) no. 3, pp. 741-769 | MR | Zbl
[21] Higher-dimensional Reidemeister torsion invariants for cusped hyperbolic -manifolds, J. Topol., Volume 7 (2014) no. 1, pp. 69-119 | DOI | MR | Zbl
[22] Representations of knot groups into and twisted Alexander polynomials, Handbook of Group Actions. Vol. I (L. Ji; A. Papadopoulos; S.-T. Yau, eds.) (Advanced Lectures in Mathematics), Volume 31, International Press, 2015, pp. 527-576 | MR
[23] On adjoint torsion polynomial of genus one two-bridge knots, Kodai Math. J., Volume 45 (2022) no. 1, pp. 110-116 | MR | Zbl
[24] Mutant knots, New ideas in low dimensional topology (L. H. Kauffman; V. O. Manturov, eds.) (Series on Knots and Everything), Volume 56, World Scientific, 2015, pp. 379-412 | DOI | MR | Zbl
[25] Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology, Volume 37 (1998) no. 2, pp. 365-392 | DOI | MR | Zbl
[26] Spherical cone structures on -bridge knots and links, Kobe J. Math., Volume 21 (2004) no. 1-2, pp. 61-70 | MR | Zbl
[27] Reidemeister torsion, hyperbolic three-manifolds, and character varieties, Handbook of Group Actions. Vol. IV (L. Ji; A. Papadopoulos; S.-T. Yau, eds.) (Advanced Lectures in Mathematics), Volume 41, International Press, 2018, pp. 447-507 | MR | Zbl
[28] Deforming Euclidean cone -manifolds, Geom. Topol., Volume 11 (2007), pp. 1507-1538 | DOI | MR | Zbl
[29] A survey of the impact of Thurston’s work on knot theory, In the tradition of Thurston–geometry and topology (K. Ohshika; A. Papadopoulos, eds.), Springer, 2020, pp. 67-160 | DOI | MR | Zbl
[30] The Geometry and Topology of -manifolds (1977/78) (Lecture Notes, Princeton University)
[31] Adjoint twisted Alexander polynomials of genus one two-bridge knots, J. Knot Theory Ramifications, Volume 25 (2016), 1650065, 13 pages | MR | Zbl
[32] Twisted Alexander polynomials of genus one two-bridge knots, Kodai Math. J., Volume 41 (2018) no. 1, pp. 86-97 | MR | Zbl
[33] Twisted Alexander polynomial for finitely presentable groups, Topology, Volume 33 (1994) no. 2, pp. 241-256 | DOI | MR | Zbl
[34] Algebraic -theory of generalized free products. I, Ann. Math., Volume 108 (1978), pp. 135-204 | DOI | Zbl
[35] A relationship between the non-acyclic Reidemeister torsion and a zero of the acyclic Reidemeister torsion, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 337-362 | DOI | Numdam | MR | Zbl
Cité par Sources :