[Calcul localisé pour la catégorie de Hecke]
Nous construisons un foncteur de la catégorie de Hecke vers un groupoïde construit à partir du groupe de Coxeter sous-jacent. Cette construction corrige une lacune dans un travail antérieur des auteurs. Ce foncteur fournit une réalisation abstraite de la localisation de la catégorie de Hecke en le corps des fractions. Connaître des formules explicites pour la localisation est un outil technique clé pour le calcul algorithmique avec les bimodules de Soergel.
We construct a functor from the Hecke category to a groupoid built from the underlying Coxeter group. This fixes a gap in an earlier work of the authors. This functor provides an abstract realization of the localization of the Hecke category at the field of fractions. Knowing explicit formulas for the localization is a key technical tool in software for computations with Soergel bimodules.
Keywords: Hecke category, localization, diagrammatic algebra
Mot clés : catégorie de Hecke, localisation, algèbre diagrammatique
Ben Elias 1 ; Geordie Williamson 2
@article{AMBP_2023__30_1_1_0, author = {Ben Elias and Geordie Williamson}, title = {Localized calculus for the {Hecke} category}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--73}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {30}, number = {1}, year = {2023}, doi = {10.5802/ambp.415}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/} }
TY - JOUR AU - Ben Elias AU - Geordie Williamson TI - Localized calculus for the Hecke category JO - Annales mathématiques Blaise Pascal PY - 2023 SP - 1 EP - 73 VL - 30 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/ DO - 10.5802/ambp.415 LA - en ID - AMBP_2023__30_1_1_0 ER -
%0 Journal Article %A Ben Elias %A Geordie Williamson %T Localized calculus for the Hecke category %J Annales mathématiques Blaise Pascal %D 2023 %P 1-73 %V 30 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/ %R 10.5802/ambp.415 %G en %F AMBP_2023__30_1_1_0
Ben Elias; Geordie Williamson. Localized calculus for the Hecke category. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 1-73. doi : 10.5802/ambp.415. https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/
[1] A homomorphism between Bott–Samelson bimodules (2020) | arXiv
[2] A Hecke action on -modules, J. Inst. Math. Jussieu (2023) (first view) | DOI
[3] On one-sided singular Soergel bimodules, J. Algebra, Volume 633 (2023), pp. 722-753 | MR | Zbl
[4] Free-monodromic mixed tilting sheaves on flag varieties (2017) | arXiv
[5] Koszul duality for Kac–Moody groups and characters of tilting modules, J. Am. Math. Soc., Volume 32 (2019) no. 1, pp. 261-310 | DOI | MR | Zbl
[6] Modular affine Hecke category and regular centralizer (2022) | arXiv
[7] Path isomorphisms between quiver Hecke and diagrammatic Bott–Samelson endomorphism algebras (2020) | arXiv
[8] The two-color Soergel calculus, Compos. Math., Volume 152 (2016) no. 2, pp. 327-398 | DOI | MR | Zbl
[9] Quantum Satake in type . Part I, J. Comb. Algebra., Volume 1 (2017) no. 1, pp. 63-125 | DOI | MR | Zbl
[10] Categorical diagonalization of full twists (2017) | arXiv
[11] Diagrammatics for Soergel categories., Int. J. Math. Math. Sci., Volume 2010 (2010), 978635, 58 pages | DOI | MR | Zbl
[12] Trace decategorification of the Hecke category, J. Algebra, Volume 449 (2016), pp. 615-634 | DOI | MR | Zbl
[13] Indecomposable Soergel bimodules for universal Coxeter groups, Trans. Am. Math. Soc., Volume 369 (2017) no. 6, pp. 3883-3910 (with an appendix by Ben Webster) | DOI | MR | Zbl
[14] Modular representation theory in type A via Soergel bimodules, Preprint | arXiv
[15] Introduction to Soergel bimodules, RSME Springer Series, 5, Springer, 2020, xxv+588 pages | DOI | MR
[16] On cubes of Frobenius extensions, Representation theory—current trends and perspectives (EMS Series of Congress Reports), European Mathematical Society, 2017, pp. 171-186 | DOI | MR | Zbl
[17] Soergel calculus, Represent. Theory, Volume 20 (2016), pp. 295-374 | DOI | MR | Zbl
[18] Diagrammatics for Coxeter groups and their braid groups, Quantum Topol., Volume 8 (2017) no. 3, pp. 413-457 | DOI | MR | Zbl
[19] Calculating the -canonical basis of Hecke algebras, Transform. Groups, Volume 28 (2023), pp. 1121-1148 | DOI | MR
[20] Hilbert schemes and -ification of Khovanov–Rozansky homology (2017) | arXiv
[21] Existence and rotatability of the two-colored Jones–Wenzl projector (2023) | arXiv
[22] Soergel calculus and Schubert calculus, Bull. Inst. Math., Acad. Sin. (N.S.), Volume 13 (2018) no. 3, pp. 317-350 | MR | Zbl
[23] The -canonical basis for Hecke algebras, Categorification and higher representation theory (Contemporary Mathematics), Volume 683, American Mathematical Society, 2017, pp. 333-361 | DOI | MR | Zbl
[24] Sur la catégorie des bimodules de Soergel, J. Algebra, Volume 320 (2008) no. 7, pp. 2675-2694 | DOI | MR | Zbl
[25] Presentation of right-angled Soergel categories by generators and relations, J. Pure Appl. Algebra, Volume 214 (2010) no. 12, pp. 2265-2278 | DOI | MR | Zbl
[26] The anti-spherical category, Adv. Math., Volume 405 (2022), 108509, 34 pages | DOI | MR | Zbl
[27] Billiards and tilting characters for , SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), 015, 22 pages | Zbl
[28] A Formula for the Jones–Wenzl Projections (2015) | arXiv
[29] Formal power series over a Henselian ring MathOverflow, https://mathoverflow.net/q/122170 (version: 2014-10-23)
[30] Tilting modules and the -canonical basis, Astérisque, 397, Société Mathématique de France, 2018, ix+184 pages | MR
[31] A theorem on Henselian rings, Can. Math. Bull., Volume 11 (1968), pp. 275-277 | DOI | MR | Zbl
[32] Kazhdan-Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu, Volume 6 (2007) no. 3, pp. 501-525 | DOI | MR | Zbl
[33] Schubert calculus and torsion explosion, J. Am. Math. Soc., Volume 30 (2017) no. 4, pp. 1023-1046 (with a joint appendix with Alex Kontorovich and Peter J. McNamara) | DOI | MR | Zbl
[34] Parity sheaves and the Hecke category, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, World Scientific (2018), pp. 979-1015 | MR | Zbl
Cité par Sources :