Localized calculus for the Hecke category
[Calcul localisé pour la catégorie de Hecke]
Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 1-73.

Nous construisons un foncteur de la catégorie de Hecke vers un groupoïde construit à partir du groupe de Coxeter sous-jacent. Cette construction corrige une lacune dans un travail antérieur des auteurs. Ce foncteur fournit une réalisation abstraite de la localisation de la catégorie de Hecke en le corps des fractions. Connaître des formules explicites pour la localisation est un outil technique clé pour le calcul algorithmique avec les bimodules de Soergel.

We construct a functor from the Hecke category to a groupoid built from the underlying Coxeter group. This fixes a gap in an earlier work of the authors. This functor provides an abstract realization of the localization of the Hecke category at the field of fractions. Knowing explicit formulas for the localization is a key technical tool in software for computations with Soergel bimodules.

Publié le :
DOI : 10.5802/ambp.415
Classification : 00X99
Keywords: Hecke category, localization, diagrammatic algebra
Mot clés : catégorie de Hecke, localisation, algèbre diagrammatique

Ben Elias 1 ; Geordie Williamson 2

1 Department of Mathematics University of Oregon 1585 E 13th Ave, Eugene, OR 97403 USA
2 Sydney Mathematical Research Institute School of Mathematics and Statistics Faculty of Science Room L4.44, Quadrangle A14 The University of Sydney, NSW, 2006 AUSTRALIA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2023__30_1_1_0,
     author = {Ben Elias and Geordie Williamson},
     title = {Localized calculus for the {Hecke} category},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--73},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {30},
     number = {1},
     year = {2023},
     doi = {10.5802/ambp.415},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/}
}
TY  - JOUR
AU  - Ben Elias
AU  - Geordie Williamson
TI  - Localized calculus for the Hecke category
JO  - Annales mathématiques Blaise Pascal
PY  - 2023
SP  - 1
EP  - 73
VL  - 30
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/
DO  - 10.5802/ambp.415
LA  - en
ID  - AMBP_2023__30_1_1_0
ER  - 
%0 Journal Article
%A Ben Elias
%A Geordie Williamson
%T Localized calculus for the Hecke category
%J Annales mathématiques Blaise Pascal
%D 2023
%P 1-73
%V 30
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/
%R 10.5802/ambp.415
%G en
%F AMBP_2023__30_1_1_0
Ben Elias; Geordie Williamson. Localized calculus for the Hecke category. Annales mathématiques Blaise Pascal, Tome 30 (2023) no. 1, pp. 1-73. doi : 10.5802/ambp.415. https://ambp.centre-mersenne.org/articles/10.5802/ambp.415/

[1] Noriyuki Abe A homomorphism between Bott–Samelson bimodules (2020) | arXiv

[2] Noriyuki Abe A Hecke action on G 1 T-modules, J. Inst. Math. Jussieu (2023) (first view) | DOI

[3] Noriyuki Abe On one-sided singular Soergel bimodules, J. Algebra, Volume 633 (2023), pp. 722-753 | MR | Zbl

[4] Pramod N. Achar; Shotaro Makisumi; Simon Riche; Geordie Williamson Free-monodromic mixed tilting sheaves on flag varieties (2017) | arXiv

[5] Pramod N. Achar; Shotaro Makisumi; Simon Riche; Geordie Williamson Koszul duality for Kac–Moody groups and characters of tilting modules, J. Am. Math. Soc., Volume 32 (2019) no. 1, pp. 261-310 | DOI | MR | Zbl

[6] Roman Bezrukavnikov; Simon Riche Modular affine Hecke category and regular centralizer (2022) | arXiv

[7] Chris Bowman; Anton Cox; Amit Hazi Path isomorphisms between quiver Hecke and diagrammatic Bott–Samelson endomorphism algebras (2020) | arXiv

[8] Ben Elias The two-color Soergel calculus, Compos. Math., Volume 152 (2016) no. 2, pp. 327-398 | DOI | MR | Zbl

[9] Ben Elias Quantum Satake in type A. Part I, J. Comb. Algebra., Volume 1 (2017) no. 1, pp. 63-125 | DOI | MR | Zbl

[10] Ben Elias; Matthew Hogancamp Categorical diagonalization of full twists (2017) | arXiv

[11] Ben Elias; Mikhail Khovanov Diagrammatics for Soergel categories., Int. J. Math. Math. Sci., Volume 2010 (2010), 978635, 58 pages | DOI | MR | Zbl

[12] Ben Elias; Aaron D. Lauda Trace decategorification of the Hecke category, J. Algebra, Volume 449 (2016), pp. 615-634 | DOI | MR | Zbl

[13] Ben Elias; Nicolas Libedinsky Indecomposable Soergel bimodules for universal Coxeter groups, Trans. Am. Math. Soc., Volume 369 (2017) no. 6, pp. 3883-3910 (with an appendix by Ben Webster) | DOI | MR | Zbl

[14] Ben Elias; Ivan Losev Modular representation theory in type A via Soergel bimodules, Preprint | arXiv

[15] Ben Elias; Shotaro Makisumi; Ulrich Thiel; Geordie Williamson Introduction to Soergel bimodules, RSME Springer Series, 5, Springer, 2020, xxv+588 pages | DOI | MR

[16] Ben Elias; Noah Snyder; Geordie Williamson On cubes of Frobenius extensions, Representation theory—current trends and perspectives (EMS Series of Congress Reports), European Mathematical Society, 2017, pp. 171-186 | DOI | MR | Zbl

[17] Ben Elias; Geordie Williamson Soergel calculus, Represent. Theory, Volume 20 (2016), pp. 295-374 | DOI | MR | Zbl

[18] Ben Elias; Geordie Williamson Diagrammatics for Coxeter groups and their braid groups, Quantum Topol., Volume 8 (2017) no. 3, pp. 413-457 | DOI | MR | Zbl

[19] Joel Gibson; Lars Thorge Jensen; Geordie Williamson Calculating the p-canonical basis of Hecke algebras, Transform. Groups, Volume 28 (2023), pp. 1121-1148 | DOI | MR

[20] Eugene Gorsky; Matthew Hogancamp Hilbert schemes and y-ification of Khovanov–Rozansky homology (2017) | arXiv

[21] Amit Hazi Existence and rotatability of the two-colored Jones–Wenzl projector (2023) | arXiv

[22] Xuhua He; Geordie Williamson Soergel calculus and Schubert calculus, Bull. Inst. Math., Acad. Sin. (N.S.), Volume 13 (2018) no. 3, pp. 317-350 | MR | Zbl

[23] Lars Thorge Jensen; Geordie Williamson The p-canonical basis for Hecke algebras, Categorification and higher representation theory (Contemporary Mathematics), Volume 683, American Mathematical Society, 2017, pp. 333-361 | DOI | MR | Zbl

[24] Nicolas Libedinsky Sur la catégorie des bimodules de Soergel, J. Algebra, Volume 320 (2008) no. 7, pp. 2675-2694 | DOI | MR | Zbl

[25] Nicolas Libedinsky Presentation of right-angled Soergel categories by generators and relations, J. Pure Appl. Algebra, Volume 214 (2010) no. 12, pp. 2265-2278 | DOI | MR | Zbl

[26] Nicolas Libedinsky; Geordie Williamson The anti-spherical category, Adv. Math., Volume 405 (2022), 108509, 34 pages | DOI | MR | Zbl

[27] George Lusztig; Geordie Williamson Billiards and tilting characters for SL 3 , SIGMA, Symmetry Integrability Geom. Methods Appl., Volume 14 (2018), 015, 22 pages | Zbl

[28] Scott Morrison A Formula for the Jones–Wenzl Projections (2015) | arXiv

[29] Francesco Polizzi Formal power series over a Henselian ring MathOverflow, https://mathoverflow.net/q/122170 (version: 2014-10-23)

[30] Simon Riche; Geordie Williamson Tilting modules and the p-canonical basis, Astérisque, 397, Société Mathématique de France, 2018, ix+184 pages | MR

[31] N. Sankaran A theorem on Henselian rings, Can. Math. Bull., Volume 11 (1968), pp. 275-277 | DOI | MR | Zbl

[32] Wolfgang Soergel Kazhdan-Lusztig–Polynome und unzerlegbare Bimoduln über Polynomringen, J. Inst. Math. Jussieu, Volume 6 (2007) no. 3, pp. 501-525 | DOI | MR | Zbl

[33] Geordie Williamson Schubert calculus and torsion explosion, J. Am. Math. Soc., Volume 30 (2017) no. 4, pp. 1023-1046 (with a joint appendix with Alex Kontorovich and Peter J. McNamara) | DOI | MR | Zbl

[34] Geordie Williamson Parity sheaves and the Hecke category, Proceedings of the International Congress of Mathematicians—Rio de Janeiro 2018. Vol. I. Plenary lectures, World Scientific (2018), pp. 979-1015 | MR | Zbl

Cité par Sources :