The Green’s function of the Lax–Wendroff and Beam–Warming schemes
Annales mathématiques Blaise Pascal, Volume 29 (2022) no. 2, pp. 247-294.

We prove a sharp uniform generalized Gaussian bound for the Green’s function of the Lax–Wendroff and Beam–Warming schemes. Our bound highlights the spatial region that leads to the well-known (rather weak) instability of these schemes in the maximum norm. We also recover uniform bounds in the maximum norm when these schemes are applied to initial data of bounded variation.

On obtient une borne Gaussienne généralisée pour la fonction de Green des schémas de Lax–Wendroff et Beam–Warming. Cette borne permet de préciser la région de l’espace qui conduit à l’instabilité bien connue de ces schémas pour la norme uniforme. On retrouve par ailleurs des bornes uniformes quand ces schémas sont appliqués à des suites à variations bornées.

Published online:
DOI: 10.5802/ambp.413
Classification: 65M06, 65M12, 35L02
Keywords: Transport equation, Lax–Wendroff scheme, Beam–Warming scheme, difference approximation, convolution, stability, local limit theorem
Mot clés : Équation de transport, schéma de Lax–Wendroff, schéma de Beam–Warming, approximation par différences finies, convolution, stabilité, théorème de la limite locale
Jean-François Coulombel 1

1 Institut de Mathématiques de Toulouse - UMR 5219 Université de Toulouse ; CNRS Université Paul Sabatier 118 route de Narbonne 31062 Toulouse Cedex 9 France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AMBP_2022__29_2_247_0,
     author = {Jean-Fran\c{c}ois Coulombel},
     title = {The {Green{\textquoteright}s} function of the {Lax{\textendash}Wendroff} and {Beam{\textendash}Warming} schemes},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {247--294},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {29},
     number = {2},
     year = {2022},
     doi = {10.5802/ambp.413},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.413/}
}
TY  - JOUR
AU  - Jean-François Coulombel
TI  - The Green’s function of the Lax–Wendroff and Beam–Warming schemes
JO  - Annales mathématiques Blaise Pascal
PY  - 2022
SP  - 247
EP  - 294
VL  - 29
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.413/
DO  - 10.5802/ambp.413
LA  - en
ID  - AMBP_2022__29_2_247_0
ER  - 
%0 Journal Article
%A Jean-François Coulombel
%T The Green’s function of the Lax–Wendroff and Beam–Warming schemes
%J Annales mathématiques Blaise Pascal
%D 2022
%P 247-294
%V 29
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.413/
%R 10.5802/ambp.413
%G en
%F AMBP_2022__29_2_247_0
Jean-François Coulombel. The Green’s function of the Lax–Wendroff and Beam–Warming schemes. Annales mathématiques Blaise Pascal, Volume 29 (2022) no. 2, pp. 247-294. doi : 10.5802/ambp.413. https://ambp.centre-mersenne.org/articles/10.5802/ambp.413/

[1] Nicolaas G. de Bruijn Asymptotic methods in analysis, Dover Publications, 1981

[2] Bruno Després Finite volume transport schemes, Numer. Math., Volume 108 (2008) no. 4, pp. 529-556

[3] Persi Diaconis; Laurent Saloff-Coste Convolution powers of complex functions on , Math. Nachr., Volume 287 (2014) no. 10, pp. 1106-1130

[4] Donald Estep; Michael Loss; Jeffrey Rauch Boundedness of dispersive difference schemes, Math. Comput., Volume 55 (1990) no. 191, pp. 55-87

[5] Bertil Gustafsson; Heinz-Otto Kreiss; Joseph Oliger Time dependent problems and difference methods, Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs & Tracts, John Wiley & Sons, 1995

[6] G. W. Hedstrom The near-stability of the Lax–Wendroff method, Numer. Math., Volume 7 (1965), pp. 73-77

[7] G. W. Hedstrom Norms of powers of absolutely convergent Fourier series, Mich. Math. J., Volume 13 (1966), pp. 393-416

[8] Jean-Pierre Kahane Séries de Fourier absolument convergentes, Ergebnisse der Mathematik und ihrer Grenzgebiete, 50, Springer, 1970

[9] Donald J. Newman A simple proof of Wiener’s 1/f theorem, Proc. Am. Math. Soc., Volume 48 (1975), pp. 264-265

[10] Nikolaj K. Nikolski Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs, 93, American Mathematical Society, 2002

[11] Valentin V. Petrov Sums of independent random variables, Ergebnisse der Mathematik und ihrer Grenzgebiete, 82, Springer, 1975

[12] Evan Randles; Laurent Saloff-Coste On the convolution powers of complex functions on , J. Fourier Anal. Appl., Volume 21 (2015) no. 4, pp. 754-798 | Zbl

[13] Evan Randles; Laurent Saloff-Coste Convolution powers of complex functions on d , Rev. Mat. Iberoam., Volume 33 (2017) no. 3, pp. 1045-1121

[14] Robert D. Richtmyer; Keith W. Morton Difference methods for initial value problems. Theory and applications, Graduate Texts in Mathematics, Interscience Publishers, 1967 | Zbl

[15] Walter Rudin Real and complex analysis, McGraw-Hill, 1987

[16] Yiorgos S. Smyrlis; Shih H. Yu Existence and stability of traveling discrete shocks, Numerical analysis and its applications (Rousse, 1996) (Lecture Notes in Computer Science), Volume 1196, Springer, 1997, pp. 466-473

[17] John C. Strikwerda; Bruce A. Wade A survey of the Kreiss matrix theorem for power bounded families of matrices and its extensions, Linear operators (Warsaw, 1994) (Banach Center Publications), Volume 38, Polish Academy of Sciences, 1997, pp. 339-360

[18] Vidar Thomée Stability of difference schemes in the maximum-norm, J. Differ. Equations, Volume 1 (1965), pp. 273-292

[19] Lloyd N. Trefethen; Mark Embree Spectra and pseudospectra. The behavior of nonnormal matrices and operators, Princeton University Press, 2005 | Zbl

Cited by Sources: