Injectivity radius of manifolds with a Lie structure at infinity
[Le rayon d’injectivité des variétés munies d’une structure de Lie à l’infini]
Annales mathématiques Blaise Pascal, Tome 29 (2022) no. 2, pp. 235-246.

À l’aide des groupoïdes de Lie, on montre que le rayon d’injectivité d’une variété munie d’une structure de Lie à l’infini est strictement positif. La démonstration s’appuie sur l’intégrabilité de l’algébroïde de Lie correspondant, un résultat bien connu que l’on établit directement en regardant les variétés à coins comme des cas particuliers d’orbifolds.

Using Lie groupoids, we prove that the injectivity radius of a manifold with a Lie structure at infinity is positive. This relies on the integrability of the corresponding Lie algebroid, a well-known result that we prove explicitly by regarding manifolds with corners as particular instances of orbifolds.

Publié le :
DOI : 10.5802/ambp.412
Classification : 53C22, 22A22
Keywords: Injectivity radius, Lie structure at infinity, Lie groupoid
Mot clés : Rayon d’injectivité, structure de Lie à l’infini, groupoïde de Lie

Quang-Tu Bui 1

1 Départment de Mathématiques Université du Québec à Montréal C.P. 8888, Succ. Centre-Ville Montréal (Québec) H3C 3P8 Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2022__29_2_235_0,
     author = {Quang-Tu Bui},
     title = {Injectivity radius of manifolds with a {Lie} structure at infinity},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {235--246},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {29},
     number = {2},
     year = {2022},
     doi = {10.5802/ambp.412},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.412/}
}
TY  - JOUR
AU  - Quang-Tu Bui
TI  - Injectivity radius of manifolds with a Lie structure at infinity
JO  - Annales mathématiques Blaise Pascal
PY  - 2022
SP  - 235
EP  - 246
VL  - 29
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.412/
DO  - 10.5802/ambp.412
LA  - en
ID  - AMBP_2022__29_2_235_0
ER  - 
%0 Journal Article
%A Quang-Tu Bui
%T Injectivity radius of manifolds with a Lie structure at infinity
%J Annales mathématiques Blaise Pascal
%D 2022
%P 235-246
%V 29
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.412/
%R 10.5802/ambp.412
%G en
%F AMBP_2022__29_2_235_0
Quang-Tu Bui. Injectivity radius of manifolds with a Lie structure at infinity. Annales mathématiques Blaise Pascal, Tome 29 (2022) no. 2, pp. 235-246. doi : 10.5802/ambp.412. https://ambp.centre-mersenne.org/articles/10.5802/ambp.412/

[1] Bernd Ammann; Robert Lauter; Victor Nistor On the geometry of Riemannian manifolds with a Lie structure at infinity, Int. J. Math., Volume 2004 (2004), pp. 161-193

[2] Bernd Ammann; Robert Lauter; Victor Nistor Pseudo-differential operators on manifolds with a Lie structure at infinity, Ann. Math., Volume 165 (2007) no. 3, pp. 717-747

[3] Mahdi Ammar Polyhomogénéité des métriques compatibles avec une structure de Lie à l’infini le long du flot de Ricci, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 38 (2021) no. 6, pp. 1795-1840 | DOI | MR

[4] Ronan J. Conlon; Anda Degeratu; Frédéric Rochon Quasi-asymptotically conical Calabi–Yau manifolds, Geom. Topol., Volume 23 (2019) no. 1, pp. 29-100

[5] Marius Crainic; Rui Loja Fernandes Integrability of Lie brackets, Ann. Math., Volume 157 (2003) no. 2, pp. 575-620

[6] Claire Debord Holonomy groupoids of singular foliations, J. Differ. Geom., Volume 58 (2001) no. 3, pp. 467-500

[7] Daniel Grieser Scales, blow-up and quasimode construction, Geometric and computational spectral theory (Contemp. Math.), Volume 700, American Mathematical Society, 2017, pp. 207-266 | Zbl

[8] Dominic Joyce On manifolds with corners, Advances in geometric analysis (Advanced Lectures in Mathematics), Volume 21, International Press, 2012, pp. 225-258 | MR

[9] Richard B. Melrose Differential analysis on manifolds with corners (available at http://www-math.mit.edu/ rbm/book.html)

[10] Richard B. Melrose Calculus of conormal distributions on manifolds with corners, Int. Math. Res. Not., Volume 1992 (1992) no. 3, pp. 51-61

[11] Victor Nistor; Alan Weinstein; Ping Xu Pseudodifferential operators on differential groupoids, Pac. J. Math., Volume 189 (1999) no. 1, pp. 117-152

Cité par Sources :