We study the convergence of sequences of nonlinear integrodifferential reaction-diffusion equations when the Fickian terms belong to a class of convex functionals defined on a Hilbert space, equipped with the Mosco-convergence, and the non Fickian terms belong to a class of convex functionals, whose restrictions to a compactly embedded subspace are equipped with the -convergence. As a consequence we prove a homogenization theorem for this class under a stochastic homogenization framework.
Mots clés : Integrodifferential diffusion equations, non Fickian flux, Mosco-convergence, $\Gamma $-convergence, Convergence of reaction-diffusion equations, stochastic homogenization
Omar Anza Hafsa 1 ; Jean Philippe Mandallena 1 ; Gérard Michaille 1
@article{AMBP_2022__29_1_1_0, author = {Omar Anza Hafsa and Jean Philippe Mandallena and G\'erard Michaille}, title = {Convergence of nonlinear integrodifferential reaction-diffusion equations via {Mosco}$\times \Gamma $-convergence}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--50}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {29}, number = {1}, year = {2022}, doi = {10.5802/ambp.406}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.406/} }
TY - JOUR AU - Omar Anza Hafsa AU - Jean Philippe Mandallena AU - Gérard Michaille TI - Convergence of nonlinear integrodifferential reaction-diffusion equations via Mosco$\times \Gamma $-convergence JO - Annales mathématiques Blaise Pascal PY - 2022 SP - 1 EP - 50 VL - 29 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.406/ DO - 10.5802/ambp.406 LA - en ID - AMBP_2022__29_1_1_0 ER -
%0 Journal Article %A Omar Anza Hafsa %A Jean Philippe Mandallena %A Gérard Michaille %T Convergence of nonlinear integrodifferential reaction-diffusion equations via Mosco$\times \Gamma $-convergence %J Annales mathématiques Blaise Pascal %D 2022 %P 1-50 %V 29 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.406/ %R 10.5802/ambp.406 %G en %F AMBP_2022__29_1_1_0
Omar Anza Hafsa; Jean Philippe Mandallena; Gérard Michaille. Convergence of nonlinear integrodifferential reaction-diffusion equations via Mosco$\times \Gamma $-convergence. Annales mathématiques Blaise Pascal, Tome 29 (2022) no. 1, pp. 1-50. doi : 10.5802/ambp.406. https://ambp.centre-mersenne.org/articles/10.5802/ambp.406/
[1] Compact embeddings of vector-valued Sobolev and Besov spaces, Glas. Mat., III. Ser., Volume 35 (2000) no. 1, pp. 161-177 (Dedicated to the memory of Branko Najman) | MR | Zbl
[2] Stability of a class of nonlinear reaction-diffusion equations and stochastic homogenization, Asymptotic Anal., Volume 115 (2019) no. 3-4, pp. 169-221 | DOI | MR | Zbl
[3] Continuity theorem for non-local functionals indexed by Young measures and stochastic homogenization, J. Math. Pures Appl. (2020), pp. 158-202 | DOI | MR | Zbl
[4] Convergence of a class of nonlinear time delays reaction-diffusion equations, NoDEA, Nonlinear Differ. Equ. Appl., Volume 27 (2020) no. 2, 20, 48 pages | DOI | MR | Zbl
[5] Variational convergence for functions and operators, Applicable Mathematics Series, Pitman Advanced Publishing Program, 1984, xiv+423 pages | MR
[6] Variational analysis in Sobolev and BV spaces. Applications to PDEs and optimization, MPS/SIAM Series on Optimization, Society for Industrial and Applied Mathematics, 2014, xii+793 pages | DOI | MR
[7] Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România; Noordhoff International Publishing, 1976, 352 pages (translated from the Romanian) | DOI | MR | Zbl
[8] Semilinear integro-differential equations in Hilbert space, J. Math. Anal. Appl., Volume 67 (1979) no. 2, pp. 452-475 | DOI | MR | Zbl
[9] Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland Mathematics Studies, 5, North-Holland; Elsevier, 1973, vi+183 pages | MR
[10] Local existence for retarded Volterra integrodifferential equations with Hille-Yosida operators, Nonlinear Anal., Theory Methods Appl., Volume 66 (2007) no. 12, pp. 2814-2832 | DOI | MR | Zbl
[11] Local existence of some nonlinear Volterra integrodifferential equations with infinite delay, Taiwanese J. Math., Volume 14 (2010) no. 1, pp. 131-152 | DOI | MR | Zbl
[12] An abstract nonlinear Volterra integrodifferential equation, J. Math. Anal. Appl., Volume 64 (1978) no. 3, pp. 701-735 | DOI | MR | Zbl
[13] An introduction to -convergence, Progress in Nonlinear Differential Equations and their Applications, Birkhäuser, 1993, xiv+340 pages | DOI | MR
[14] Global smooth solutions for a class of parabolic integrodifferential equations, Trans. Am. Math. Soc., Volume 348 (1996) no. 1, pp. 267-290 | DOI | MR | Zbl
[15] Abstract nonlinear Volterra integrodifferential equations with nonsmooth kernels, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 2 (1991) no. 1, pp. 43-53 | MR | Zbl
[16] Recent developments in non-Fickian diffusion: a new look at viscoelastic materials, These de Doutoramento em Matematica apresentada ao Departamento de Matematica da Faculdade de Ciencias e Tecnologia da Universidade de Coimbra, Portugal: Department of Mathematics of the University of Coimbra (2014)
[17] On an integral equation in a Hilbert space, SIAM J. Math. Anal., Volume 8 (1977) no. 6, pp. 950-970 | DOI | MR | Zbl
[18] An existence result on a Volterra equation in a Banach space, Trans. Am. Math. Soc. (1978), pp. 285-304 | DOI | MR | Zbl
[19] Stability theorems for a class of functional differential equations, SIAM J. Appl. Math., Volume 30 (1976) no. 3, pp. 557-576 | DOI | MR | Zbl
[20] Convergence of convex sets and of solutions of variational inequalities, Adv. Math. (1969), pp. 510-585 | DOI | MR | Zbl
[21] On the continuity of the Young–Fenchel transform, J. Math. Anal. Appl. (1971), pp. 518-535 | DOI | MR | Zbl
[22] Periodic homogenization of nonlocal operators with a convolution-type kernel, SIAM J. Math. Anal., Volume 49 (2017) no. 1, pp. 64-81 | DOI | MR | Zbl
[23] Homogenization of biased convolution type operators, Asymptotic Anal., Volume 115 (2019) no. 3-4, pp. 241-262 | DOI | MR | Zbl
[24] Existence and boundedness of solutions of abstract nonlinear integro-differential equations of nonconvolution type, J. Math. Anal. Appl., Volume 70 (1979) no. 1, pp. 42-60 | DOI | MR | Zbl
Cité par Sources :