Pseudo-Riemannian metrics on bicovariant bimodules
Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 2, pp. 159-180.

We study pseudo-Riemannian invariant metrics on bicovariant bimodules over Hopf algebras. We clarify some properties of such metrics and prove that pseudo-Riemannian invariant metrics on a bicovariant bimodule and its cocycle deformations are in one to one correspondence.

Publié le :
DOI : 10.5802/ambp.394
Mots clés : bicovariant bimodules, pseudo-Riemannian metric, cocycle deformations

Jyotishman Bhowmick 1 ; Sugato Mukhopadhyay 1

1 Theoretical Statistics and Mathematics Unit Indian Statistical Institute 203 B.T. Road Kolkata 700108 India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2020__27_2_159_0,
     author = {Jyotishman Bhowmick and Sugato Mukhopadhyay},
     title = {Pseudo-Riemannian metrics on bicovariant bimodules},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {159--180},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {27},
     number = {2},
     year = {2020},
     doi = {10.5802/ambp.394},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.394/}
}
TY  - JOUR
AU  - Jyotishman Bhowmick
AU  - Sugato Mukhopadhyay
TI  - Pseudo-Riemannian metrics on bicovariant bimodules
JO  - Annales mathématiques Blaise Pascal
PY  - 2020
SP  - 159
EP  - 180
VL  - 27
IS  - 2
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.394/
DO  - 10.5802/ambp.394
LA  - en
ID  - AMBP_2020__27_2_159_0
ER  - 
%0 Journal Article
%A Jyotishman Bhowmick
%A Sugato Mukhopadhyay
%T Pseudo-Riemannian metrics on bicovariant bimodules
%J Annales mathématiques Blaise Pascal
%D 2020
%P 159-180
%V 27
%N 2
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.394/
%R 10.5802/ambp.394
%G en
%F AMBP_2020__27_2_159_0
Jyotishman Bhowmick; Sugato Mukhopadhyay. Pseudo-Riemannian metrics on bicovariant bimodules. Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 2, pp. 159-180. doi : 10.5802/ambp.394. https://ambp.centre-mersenne.org/articles/10.5802/ambp.394/

[1] Eiichi Abe Hopf algebras, Cambridge Tracts in Mathematics, 74, Cambridge University Press, 1980, xii+284 pages (Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka) | MR | Zbl

[2] Jyotishman Bhowmick; Sugato Mukhopadhyay Covariant connections on bicovariant differential calculus, J. Algebra, Volume 563 (2020), pp. 198-250 | DOI | MR | Zbl

[3] Julien Bichon Hopf–Galois objects and cogroupoids, Rev. Unión Mat. Argent., Volume 55 (2014) no. 2, pp. 11-69 | MR | Zbl

[4] Yukio Doi Braided bialgebras and quadratic bialgebras, Commun. Algebra, Volume 21 (1993) no. 5, pp. 1731-1749 | DOI | MR | Zbl

[5] Pavel Etingof; Shlomo Gelaki; Dmitri Nikshych; Victor Ostrik Tensor categories, Mathematical Surveys and Monographs, 205, American Mathematical Society, 2015, xvi+343 pages | DOI | MR | Zbl

[6] István Heckenberger Hodge and Laplace-Beltrami operators for bicovariant differential calculi on quantum groups, Compos. Math., Volume 123 (2000) no. 3, pp. 329-354 | DOI | MR | Zbl

[7] István Heckenberger Spin geometry on quantum groups via covariant differential calculi, Adv. Math., Volume 175 (2003) no. 2, pp. 197-242 | DOI | MR | Zbl

[8] István Heckenberger; Konrad Schmüdgen Levi-Civita connections on the quantum groups SL q (N), O q (N) and Sp q (N), Commun. Math. Phys., Volume 185 (1997) no. 1, pp. 177-196 | DOI | MR | Zbl

[9] Christian Kassel Quantum groups, Graduate Texts in Mathematics, 155, Springer, 1995, xii+531 pages | DOI | MR | Zbl

[10] Shahn Majid Noncommutative Riemannian and spin geometry of the standard q-sphere, Commun. Math. Phys., Volume 256 (2005) no. 2, pp. 255-285 | DOI | MR

[11] Shahn Majid; Edwin Beggs Quantum Riemannian geometry, Springer, 2019 | DOI | Zbl

[12] Shahn Majid; Robert Oeckl Twisting of quantum differentials and the Planck scale Hopf algebra, Commun. Math. Phys., Volume 205 (1999) no. 3, pp. 617-655 | DOI | MR | Zbl

[13] Susan Montgomery Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82, American Mathematical Society, 1993, xiv+238 pages | DOI | MR | Zbl

[14] Peter Schauenburg Hopf modules and Yetter-Drinfel’d modules, J. Algebra, Volume 169 (1994) no. 3, pp. 874-890 | DOI | MR | Zbl

[15] Moss E. Sweedler Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., 1969, vii+336 pages | MR | Zbl

[16] Stanisław L. Woronowicz Differential calculus on compact matrix pseudogroups (quantum groups), Commun. Math. Phys., Volume 122 (1989) no. 1, pp. 125-170 | DOI | MR | Zbl

[17] David N. Yetter Quantum groups and representations of monoidal categories, Math. Proc. Camb. Philos. Soc., Volume 108 (1990) no. 2, pp. 261-290 | DOI | MR | Zbl

Cité par Sources :