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Pseudo-Riemannian metrics on bicovariant bimodules

Jyotishman Bhowmick
Sugato Mukhopadhyay

Abstract

We study pseudo-Riemannian invariant metrics on bicovariant bimodules over Hopf algebras. We
clarify some properties of such metrics and prove that pseudo-Riemannian invariant metrics on a
bicovariant bimodule and its cocycle deformations are in one to one correspondence.

1. Introduction

The notion of metrics on covariant bimodules on Hopf algebras have been studied by a
number of authors including Heckenberger and Schmüdgen ([6, 7, 8]) as well as Beggs,
Majid and their collaborators ([11] and references therein). The goal of this article is to
characterize bicovariant pseudo-Riemannian metrics on a cocycle-twisted bicovariant
bimodule. As in [8], the symmetry of the metric comes from Woronowicz’s braiding
map 𝜎 on the bicovariant bimodule. However, since our notion of non-degeneracy of the
metric is slightly weaker than that in [8], we consider a slightly larger class of metrics than
those in [8]. The positive-definiteness of the metric does not play any role in what we do.
We refer to the later sections for the definitions of pseudo-Riemannian metrics and

cocycle deformations. Our strategy is to exploit the covariance of the various maps between
bicovariant bimodules to view them as maps between the finite-dimensional vector spaces
of left-invariant elements of the respective bimodules. This was already observed and
used crucially by Heckenberger and Schmüdgen in the paper [8]. We prove that bi-
invariant pseudo-Riemannian metrics are automatically bicovariant maps and compare
our definition of pseudo-Riemannian metric with some of the other definitions available
in the literature. Finally, we prove that the pseudo-Riemannian bi-invariant metrics on
a bicovariant bimodule and its cocycle deformation are in one to one correspondence.
These results will be used in the companion article [2].
In Section 2, we discuss some generalities on bicovariant bimodules. In Section 3, we

define and study pseudo-Riemannian left metrics on a bicovariant differential calculus.
Finally, in Section 4, we prove our main result on bi-invariant metrics on cocycle-
deformations.
Let us set up some notations and conventions that we are going to follow. All vector

spaces will be assumed to be over the complex field. For vector spaces 𝑉1 and 𝑉2,
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𝜎can : 𝑉1 ⊗C 𝑉2 → 𝑉2 ⊗C 𝑉1 will denote the canonical flip map, i.e, 𝜎can (𝑣1 ⊗C 𝑣2) =
𝑣2 ⊗C 𝑣1. For the rest of the article, (A,Δ) will denote a Hopf algebra. We will use the
Sweedler notation for the coproduct Δ. Thus, we will write

Δ(𝑎) = 𝑎 (1) ⊗C 𝑎 (2) . (1.1)

For a right A-module 𝑉, the notation 𝑉∗ will stand for the set HomA (𝑉,A).
Following [16], the comodule coaction on a leftA-comodule 𝑉 will be denoted by the

symbol Δ𝑉 . Thus, Δ𝑉 is a C-linear map Δ𝑉 : 𝑉 → A ⊗C 𝑉 such that

(Δ ⊗C id)Δ𝑉 = (id ⊗CΔ𝑉 )Δ𝑉 , (𝜖 ⊗C id)Δ𝑉 (𝑣) = 𝑣

for all 𝑣 in 𝑉 (here 𝜖 is the counit of A). We will use the notation

Δ𝑉 (𝑣) = 𝑣 (−1) ⊗C 𝑣 (0) . (1.2)

Similarly, the comodule coaction on a right A-comodule will be denoted by 𝑉Δ and we
will write

𝑉Δ(𝑣) = 𝑣 (0) ⊗C 𝑣 (1) . (1.3)

Finally, for a Hopf algebra A, AAMA , AMA
A , AAMA

A will denote the categories of
various types of mixed Hopf-bimodules as in [13, Subsection 1.9].

2. Covariant bimodules on quantum groups

In this section we recall and prove some basic facts on covariant bimodules. These objects
were studied by many Hopf-algebraists (as Hopf-bimodules) including Abe ([1]) and
Sweedler ([15]). During the 1980’s, they were re-introduced by Woronowicz ([16]) for
studying differential calculi over Hopf algebras. Schauenburg ([14]) proved a categorical
equivalence between bicovariant bimodules and Yetter–Drinfeld modules over a Hopf
algebra, the latter being introduced by Yetter in [17].
We start by recalling the notions on covariant bimodules from Section 2 of [16].

Suppose 𝑀 is a bimodule over A such that (𝑀,Δ𝑀 ) is a left A-comodule. Then
(𝑀,Δ𝑀 ) is called a left-covariant bimodule if this tuplet is an object of the category
A
AMA , i.e, for all 𝑎 in A and 𝑚 in 𝑀 , the following equation holds.

Δ𝑀 (𝑎𝑚) = Δ(𝑎)Δ𝑀 (𝑚), Δ𝑀 (𝑚𝑎) = Δ𝑀 (𝑚)Δ(𝑎).

Similarly, if 𝑀Δ is a right comodule coaction on 𝑀, then (𝑀, 𝑀Δ) is called a right
covariant bimodule if it is an object of the category AMA

A , i.e, for any 𝑎 in A and 𝑚
in 𝑀 ,

𝑀Δ(𝑎𝑚) = Δ(𝑎)𝑀Δ(𝑚), 𝑀Δ(𝑚𝑎) = 𝑀Δ(𝑚)Δ(𝑎).
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Finally, let 𝑀 be a bimodule over A and Δ𝑀 : 𝑀 → A ⊗C 𝑀 and 𝑀Δ : 𝑀 → 𝑀 ⊗C A
be C-linear maps. Then we say that (𝑀,Δ𝑀 , 𝑀Δ) is a bicovariant bimodule if this triplet
is an object of AAMA

A . Thus,

(i) (𝑀,Δ𝑀 ) is left-covariant bimodule,

(ii) (𝑀, 𝑀Δ) is a right-covariant bimodule,

(iii) (id ⊗C𝑀Δ)Δ𝑀 = (Δ𝑀 ⊗C id)𝑀Δ.

The vector space of left (respectively, right) invariant elements of a left (respectively,
right) covariant bimodules will play a crucial role in the sequel and we introduce notations
for them here.

Definition 2.1. Let (𝑀,Δ𝑀 ) be a left-covariant bimodule over A. The subspace of
left-invariant elements of 𝑀 is defined to be the vector space

0𝑀 := {𝑚 ∈ 𝑀 : Δ𝑀 (𝑚) = 1 ⊗C 𝑚}.

Similarly, if (𝑀, 𝑀Δ) is a right-covariant bimodule overA, the subspace of right-invariant
elements of 𝑀 is the vector space

𝑀0 := {𝑚 ∈ 𝑀 : 𝑀Δ(𝑚) = 𝑚 ⊗C 1}.

Remark 2.2. We will say that a bicovariant bimodule (𝑀,Δ𝑀 , 𝑀Δ) is finite if 0𝑀 is a
finite dimensional vector space. Throughout this article, we will only work with bicovariant
bimodules which are finite.

Let us note the immediate consequences of the above definitions.

Lemma 2.3 ([16, Theorem 2.4]). Suppose 𝑀 is a bicovariant A-A-bimodule. Then

𝑀Δ(0𝑀) ⊆ 0𝑀 ⊗C A, Δ𝑀 (𝑀0) ⊆ A ⊗C 𝑀0.

More precisely, if {𝑚𝑖}𝑖 is a basis of 0𝑀, then there exist elements {𝑎 𝑗𝑖}𝑖, 𝑗 in A such that

𝑀Δ(𝑚𝑖) =
∑︁
𝑗

𝑚 𝑗 ⊗C 𝑎 𝑗𝑖 . (2.1)

Proof. This is a simple consequence of the fact that 𝑀Δ commutes with Δ𝑀 . �

The category A
AMA has a natural monoidal structure. Indeed, if (𝑀,Δ𝑀 ) and (𝑁,Δ𝑁 )

are left-covariant bimodules overA, thenwe have a left coactionΔ𝑀 ⊗A𝑁 ofA on𝑀⊗A𝑁

defined by the following formula:

Δ𝑀 ⊗A𝑁 (𝑚 ⊗A 𝑛) = 𝑚 (−1)𝑛(−1) ⊗C 𝑚 (0) ⊗A 𝑛(0) .
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Here, we have made use of the Sweedler notation introduced in (1.2). This makes 𝑀 ⊗A 𝑁

into a left covariant A-A-bimodule. Similarly, there is a right coaction 𝑀 ⊗A𝑁Δ on
𝑀 ⊗A 𝑁 if (𝑀, 𝑀Δ) and (𝑁, 𝑁Δ) are right covariant bimodules.
The fundamental theorem of Hopf modules (Theorem 1.9.4 of [13]) states that if 𝑉 is

a left-covariant bimodule over A, then 𝑉 is a free as a left (as well as a right) A-module.
This was reproved by Woronowicz in [16]. In fact, one has the following result:

Proposition 2.4 ([16, Theorem 2.1 and Theorem 2.3]). Let (𝑀,Δ𝑀 ) be a bicovariant
bimodule over A. Then the multiplication maps 0𝑀 ⊗C A → 𝑀, A ⊗C 0𝑀 → 𝑀,
𝑀0 ⊗C A → 𝑀 and A ⊗C 𝑀0 → 𝑀 are isomorphisms.

Corollary 2.5. Let (𝑀,Δ𝑀 ) and (𝑁,Δ𝑁 ) be left-covariant bimodules over A and {𝑚𝑖}𝑖
and {𝑛 𝑗 } 𝑗 be vector space bases of 0𝑀 and 0𝑁 respectively. Then each element of 𝑀 ⊗A 𝑁

can be written as
∑

𝑖 𝑗 𝑎𝑖 𝑗𝑚𝑖 ⊗A 𝑛 𝑗 and
∑

𝑖 𝑗 𝑚𝑖 ⊗A 𝑛 𝑗𝑏𝑖 𝑗 , where 𝑎𝑖 𝑗 and 𝑏𝑖 𝑗 are uniquely
determined.

A similar result holds for right-covariant bimodules (𝑀, 𝑀Δ) and (𝑁, 𝑁Δ) over A.
Finally, if (𝑀,Δ𝑀 ) is a left-covariant bimodule over A with basis {𝑚𝑖}𝑖 of 0𝑀, and
(𝑁, 𝑁Δ) is a right-covariant bimodule over A with basis {𝑛 𝑗 } 𝑗 of 𝑁0, then any element
of 𝑀 ⊗A 𝑁 can be written uniquely as

∑
𝑖 𝑗 𝑎𝑖 𝑗𝑚𝑖 ⊗A 𝑛 𝑗 as well as

∑
𝑖 𝑗 𝑚𝑖 ⊗A 𝑛 𝑗𝑏𝑖 𝑗 .

Proof. The proof of this result is an adaptation of [16, Lemma 3.2] and we omit it. �

The next proposition will require the definition of right Yetter–Drinfeld modules for
which we refer to [17] and [14, Definition 4.1].

Proposition 2.6 ([14, Theorem 5.7]). The functor 𝑀 ↦→ 0𝑀 induces a monoidal
equivalence of categories A

AMA
A and the category of right Yetter–Drinfeld modules.

Therefore, if (𝑀,Δ𝑀 ) and (𝑁,Δ𝑀 ) be left-covariant bimodules over A, then

0 (𝑀 ⊗A 𝑁) = spanC{𝑚 ⊗A 𝑛 : 𝑚 ∈ 0𝑀, 𝑛 ∈ 0𝑁}. (2.2)

Similarly, if (𝑀, 𝑀Δ) and (𝑁, 𝑁Δ) are right-covariant bimodules over A, then we have
that

(𝑀 ⊗A 𝑁)0 = spanC{𝑚 ⊗A 𝑛 : 𝑚 ∈ 𝑀0, 𝑛 ∈ 𝑁0}.

Thus, 0 (𝑀 ⊗A 𝑁) = 0𝑀 ⊗C 0𝑁 and (𝑀 ⊗A 𝑁)0 = 𝑀0 ⊗C 𝑁0.

Remark 2.7. In the light of Proposition 2.6, we are allowed to use the notations 0𝑀 ⊗C 0𝑁
and 0 (𝑀 ⊗A 𝑁) interchangeably.

We recall now the definition of covariant maps between bimodules.
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Definition 2.8. Let (𝑀,Δ𝑀 , 𝑀Δ) and (𝑁,Δ𝑁 , 𝑁Δ) be bicovariant A-bimodules and 𝑇
be a C-linear map from 𝑀 to 𝑁.

𝑇 is called left-covariant if 𝑇 is a morphism in the category AM, i.e, for all 𝑚 ∈ 𝑀,

(id ⊗C𝑇) (Δ𝑀 (𝑚)) = Δ𝑁 (𝑇 (𝑚)).
𝑇 is called right-covariant if 𝑇 is a morphism in the categoryMA . Thus, for all 𝑚 ∈ 𝑀,

(𝑇 ⊗C id)𝑀Δ(𝑚) = 𝑁Δ(𝑇 (𝑚)).
Finally, a map which is both left and right covariant will be called a bicovariant map. In
other words, a bicovariant map is a morphism in the category AMA .

We end this section by recalling the following fundamental result of Woronowicz.

Proposition 2.9 ([16, Proposition 3.1]). Given a bicovariant bimodule E there exists a
unique bimodule homomorphism

𝜎 : E ⊗A E → E ⊗A E such that 𝜎(𝜔 ⊗A 𝜂) = 𝜂 ⊗A 𝜔 (2.3)

for any left-invariant element 𝜔 and right-invariant element 𝜂 in E. 𝜎 is invertible and is
a bicovariant A-bimodule map from E ⊗A E to itself. Moreover, 𝜎 satisfies the following
braid equation on E ⊗A E ⊗A E :

(id ⊗A𝜎) (𝜎 ⊗A id) (id ⊗A𝜎) = (𝜎 ⊗A id) (id ⊗A𝜎) (𝜎 ⊗A id).

3. Pseudo-Riemannian metrics on bicovariant bimodules

In this section, we study pseudo-Riemannian metrics on bicovariant differential calculus
on Hopf algebras. After defining pseudo-Riemannian metrics, we recall the definitions
of left and right invariance of a pseudo-Riemannian metrics from [8]. We prove that a
pseudo-Riemannian metric is left (respectively, right) invariant if and only if it is left
(respectively, right) covariant. The coefficients of a left-invariant pseudo-Riemannian
metric with respect to a left-invariant basis of E are scalars. We use this fact to clarify some
properties of pseudo-Riemannian invariant metrics. We end the section by comparing
our definition with those by Heckenberger and Schmüdgen ([8]) as well as by Beggs and
Majid.

Definition 3.1 ([8]). SupposeE is a bicovariantA-bimoduleE and𝜎 : E⊗AE → E⊗AE
be the map as in Proposition 2.9. A pseudo-Riemannian metric for the pair (E, 𝜎) is a
right A-linear map 𝑔 : E ⊗A E → A such that the following conditions hold:

(i) 𝑔 ◦ 𝜎 = 𝑔.

(ii) If 𝑔(𝜌 ⊗A 𝜈) = 0 for all 𝜈 in E, then 𝜌 = 0.
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For other notions of metrics on covariant differential calculus, we refer to [11] and
references therein.

Definition 3.2 ([8]). A pseudo-Riemannian metric 𝑔 on a bicovariant A-bimodule E is
said to be left-invariant if for all 𝜌, 𝜈 in E,

(id ⊗C𝜖𝑔) (Δ(E⊗A E) (𝜌 ⊗A 𝜈)) = 𝑔(𝜌 ⊗A 𝜈).

Similarly, a pseudo-Riemannian metric 𝑔 on a bicovariant A-bimodule E is said to be
right-invariant if for all 𝜌, 𝜈 in E,

(𝜖𝑔 ⊗C id) ( (E⊗A E)Δ(𝜌 ⊗A 𝜈)) = 𝑔(𝜌 ⊗A 𝜈).

Finally, a pseudo-Riemannian metric 𝑔 on a bicovariant A-A bimodule E is said to be
bi-invariant if it is both left-invariant as well as right-invariant.

We observe that a pseudo-Riemannian metric is invariant if and only if it is covariant.

Proposition 3.3. Let 𝑔 be a pseudo-Riemannian metric on the bicovariant bimodule E.
Then 𝑔 is left-invariant if and only if 𝑔 : E ⊗A E → A is a left-covariant map. Similarly,
𝑔 is right-invariant if and only if 𝑔 : E ⊗A E → A is a right-covariant map.

Proof. Let 𝑔 be a left-invariant metric on E, and 𝜌, 𝜈 be elements of E. Then the following
computation shows that 𝑔 is a left-covariant map.
Δ𝑔(𝜌 ⊗A 𝜈) = Δ((id ⊗C𝜖𝑔) (Δ(E⊗A E) (𝜌 ⊗A 𝜈)))

= Δ(id ⊗C𝜖𝑔) (𝜌 (−1)𝜈 (−1) ⊗C 𝜌 (0) ⊗A 𝜈 (0) )
= Δ(𝜌 (−1)𝜈 (−1) )𝜖𝑔(𝜌 (0) ⊗A 𝜈 (0) )
= (𝜌 (−1) ) (1) (𝜈 (−1) ) (1) ⊗C (𝜌 (−1) ) (2) (𝜈 (−1) ) (2)𝜖𝑔(𝜌 (0) ⊗A 𝜈 (0) )
= (𝜌 (−1) ) (1) (𝜈 (−1) ) (1) ⊗C ((id⊗C𝜖𝑔) ((𝜌 (−1) ) (2) (𝜈 (−1) ) (2) ⊗C 𝜌 (0) ⊗A 𝜈 (0) ))
= 𝜌 (−1)𝜈 (−1) ⊗C ((id ⊗C𝜖𝑔) (Δ(E⊗A E) (𝜌 (0) ⊗A 𝜈 (0) )))
(where we have used co associativity of comodule coactions)

= 𝜌 (−1)𝜈 (−1) ⊗C 𝑔(𝜌 (0) ⊗A 𝜈 (0) )
= (id ⊗C𝑔) (Δ(E⊗A E) (𝜌 ⊗A 𝜈)).

On the other hand, suppose 𝑔 : E ⊗A E → A is a left-covariant map. Then we have
(id ⊗C𝜖𝑔)Δ(E⊗A E) (𝜌 ⊗A 𝜈) = (id ⊗C𝜖) (id ⊗C𝑔)Δ(E⊗A E) (𝜌 ⊗A 𝜈)

= (id ⊗C𝜖)Δ𝑔(𝜌 ⊗A 𝜈) = 𝑔(𝜌 ⊗A 𝜈).

The proof of the right-covariant case is similar. �

The following key result will be used throughout the article.
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Lemma 3.4 ([8]). If 𝑔 is a pseudo-Riemannian metric which is left-invariant on a
left-covariant A-bimodule E, then 𝑔(𝜔1 ⊗A 𝜔2) ∈ C.1 for all 𝜔1, 𝜔2 in 0E . Similarly, if
𝑔 is a right-invariant pseudo-Riemannian metric on a right-covariant A-bimodule, then
𝑔(𝜂1 ⊗A 𝜂2) ∈ C.1 for all 𝜂1, 𝜂2 in E0.

Let us clarify some of the properties of a left-invariant and right-invariant pseudo-
Riemannian metrics. To that end, we make the next definition which makes sense as we
always work with finite bicovariant bimodules (see Remark 2.2). The notations used in
the next definition will be used throughout the article.

Definition 3.5. Let E and 𝑔 be as above. For a fixed basis {𝜔1, . . . , 𝜔𝑛} of 0E, we define
𝑔𝑖 𝑗 = 𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 ). Moreover, we define 𝑉𝑔 : E → E∗ = HomA (E,A) to be the map
defined by the formula

𝑉𝑔 (𝑒) ( 𝑓 ) = 𝑔(𝑒 ⊗A 𝑓 ).

Proposition 3.6. Let 𝑔 be a left-invariant pseudo-Riemannian metric for E as in
Definition 3.1. Then the following statements hold:

(i) The map 𝑉𝑔 is a one-one right A-linear map from E to E∗.

(ii) If 𝑒 ∈ E is such that 𝑔(𝑒 ⊗A 𝑓 ) = 0 for all 𝑓 ∈ 0E, then 𝑒 = 0. In particular, the
map 𝑉𝑔 |0E is one-one and hence an isomorphism from 0E to (0E)∗.

(iii) The matrix ((𝑔𝑖 𝑗 ))𝑖 𝑗 is invertible.

(iv) Let 𝑔𝑖 𝑗 denote the (𝑖, 𝑗)-th entry of the inverse of the matrix ((𝑔𝑖 𝑗 ))𝑖 𝑗 . Then 𝑔𝑖 𝑗

is an element of C.1 for all 𝑖, 𝑗 .

(v) If 𝑔(𝑒 ⊗A 𝑓 ) = 0 for all 𝑒 in 0E, then 𝑓 = 0.

Proof. The right A-linearity of 𝑉𝑔 follows from the fact that 𝑔 is a well-defined map
from E ⊗A E to A. The condition (ii) of Definition 3.1 forces 𝑉𝑔 to be one-one. This
proves (i).
For proving (ii), note that 𝑉𝑔 |0E is the restriction of a one-one map to a subspace.

Hence, it is a one-one C-linear map. Since 𝑔 is left-invariant, by Lemma 3.4, for any 𝑒 in
0E, 𝑉𝑔 (𝑒) (0E) is contained in C. Therefore, 𝑉𝑔 maps 0E into (0E)∗. Since, 0E and (0E)∗
have the same finite dimension as vector spaces, 𝑉𝑔 |0E : 0E → (0E)∗ is an isomorphism.
This proves (ii).
Now we prove (iii). Let {𝜔𝑖}𝑖 be a basis of 0E and {𝜔∗

𝑖
}𝑖 be a dual basis, i.e,

𝜔∗
𝑖
(𝜔 𝑗 ) = 𝛿𝑖 𝑗 . Since 𝑉𝑔 |0E is a vector space isomorphism from 0E to (0E)∗ by part (ii),
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there exist complex numbers 𝑎𝑖 𝑗 such that

(𝑉𝑔)−1 (𝜔∗
𝑖 ) =

∑︁
𝑗

𝑎𝑖 𝑗𝜔 𝑗 .

This yields

𝛿𝑖𝑘 = 𝜔∗
𝑖 (𝜔𝑘 ) = 𝑔

(∑︁
𝑗

𝑎𝑖 𝑗𝜔 𝑗 ⊗A 𝜔𝑘

)
=

∑︁
𝑗

𝑎𝑖 𝑗𝑔 𝑗𝑘 .

Therefore, ((𝑎𝑖 𝑗 ))𝑖 𝑗 is the left-inverse and hence the inverse of the matrix ((𝑔𝑖 𝑗 ))𝑖 𝑗 . This
proves (iii).
For proving (iv), we use the fact that 𝑔𝑖 𝑗 is an element of C.1 for all 𝑖, 𝑗 . Since∑︁

𝑘

𝑔(𝜔𝑖 ⊗A 𝜔𝑘 )𝑔𝑘 𝑗 = 𝛿𝑖 𝑗 .1 =
∑︁
𝑘

𝑔𝑖𝑘𝑔(𝜔𝑘 ⊗A 𝜔 𝑗 ) = 𝛿𝑖 𝑗 ,

we have ∑︁
𝑘

𝑔(𝜔𝑖 ⊗A 𝜔𝑘 )𝜖 (𝑔𝑘 𝑗 ) = 𝛿𝑖 𝑗 =
∑︁
𝑘

𝜖 (𝑔𝑖𝑘 )𝑔(𝜔𝑘 ⊗A 𝜔 𝑗 ).

So, the matrix ((𝜖 (𝑔𝑖 𝑗 )))𝑖 𝑗 is also an inverse to the matrix ((𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 )))𝑖 𝑗 and hence
𝑔𝑖 𝑗 = 𝜖 (𝑔𝑖 𝑗 ) and 𝑔𝑖 𝑗 is in C.1.
Finally, we prove (v) using (iv). Suppose 𝑓 be an element in E such that 𝑔(𝑒 ⊗A 𝑓 ) = 0

for all 𝑒 in 0E. Let 𝑓 =
∑

𝑘 𝜔𝑘𝑎𝑘 for some elements 𝑎𝑘 in A. Then for any fixed index 𝑖0,
we obtain

0 = 𝑔

(∑︁
𝑗

𝑔𝑖0 𝑗𝜔 𝑗 ⊗A
∑︁
𝑘

𝜔𝑘𝑎𝑘

)
=

∑︁
𝑘

∑︁
𝑗

𝑔𝑖0 𝑗𝑔 𝑗𝑘𝑎𝑘 =
∑︁
𝑘

𝛿𝑖0𝑘𝑎𝑘 = 𝑎𝑖0 .

Hence, we have that 𝑓 = 0. This finishes the proof. �

We apply the results in Proposition 3.6 to exhibit a basis of the free right A-module
𝑉𝑔 (E). This will be used in making Definition 4.11 which is needed to prove our main
Theorem 4.15.

Lemma 3.7. Suppose {𝜔𝑖}𝑖 is a basis of 0E and {𝜔∗
𝑖
}𝑖 be the dual basis as in the proof

of Proposition 3.6. If 𝑔 is a pseudo-Riemannian left-invariant metric on E, then 𝑉𝑔 (E) is
a free right A-module with basis {𝜔∗

𝑖
}𝑖 .

Proof. We will use the notations (𝑔𝑖 𝑗 )𝑖 𝑗 and 𝑔𝑖 𝑗 from of Proposition 3.6. Since 𝑉𝑔 is a
right A-linear map, 𝑉𝑔 (E) is a right A-module. Since

𝑉𝑔 (𝜔𝑖) =
∑︁
𝑗

𝑔𝑖 𝑗𝜔
∗
𝑗 (3.1)
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and the inverse matrix (𝑔𝑖 𝑗 )𝑖 𝑗 has scalar entries (Proposition 3.6), we get

𝜔∗
𝑘 =

∑︁
𝑖

𝑔𝑘𝑖𝑉𝑔 (𝜔𝑖)

and so 𝜔∗
𝑘
belongs to𝑉𝑔 (E) for all 𝑘. By the rightA-linearity of the map𝑉𝑔, we conclude

that the set {𝜔∗
𝑖
}𝑖 is right A-total in 𝑉𝑔 (E).

Finally, if 𝑎𝑖 are elements in A such that
∑

𝑘 𝜔
∗
𝑘
𝑎𝑘 = 0, then by (3.1), we have

0 =
∑︁
𝑖,𝑘

𝑔𝑘𝑖𝑉𝑔 (𝜔𝑖)𝑎𝑘 = 𝑉𝑔

(∑︁
𝑖

𝜔𝑖

(∑︁
𝑘

𝑔𝑘𝑖𝑎𝑘

))
.

As 𝑉𝑔 is one-one and {𝜔𝑖}𝑖 is a basis of the free module E, we get∑︁
𝑘

𝑔𝑘𝑖𝑎𝑘 = 0 ∀ 𝑖.

Multiplying by 𝑔𝑖 𝑗 and summing over 𝑖 yields 𝑎 𝑗 = 0. This proves that {𝜔∗
𝑖
}𝑖 is a basis of

𝑉𝑔 (E) and finishes the proof. �

Remark 3.8. Let us note that for all 𝑒 ∈ E, the following equation holds:

𝑒 =
∑︁
𝑖

𝜔𝑖𝜔
∗
𝑖 (𝑒). (3.2)

The following proposition was kindly pointed out to us by the referee for which we
will need the notion of a left dual of an object in a monoidal category. We refer to
Definition 2.10.1 of [5] or Definition XIV.2.1 of [9] for the definition.

Proposition 3.9. Suppose 𝑔 is a pseudo-Riemannian A-bilinear pseudo-Riemannian
metric on a finite bicovariant A-bimodule. Let Ẽ denote the left dual of the object E in
the category A

AMA
A . Then Ẽ is isomorphic to E as objects in the category A

AMA
A via the

morphism 𝑉𝑔 .

Proof. It is well-known that Ẽ and E∗ are isomorphic objects in the category A
AMA

A .

This follows by using the bicovariant A-bilinear maps

ev : Ẽ ⊗A E −→ A; coev : A −→ E ⊗A Ẽ;

𝜙 ⊗A 𝑒 ↦−→ 𝜙(𝑒), 1 ↦−→
∑︁
𝑖

𝜔𝑖 ⊗A 𝜔∗
𝑖

We define ev𝑔 : E ⊗A E → A and coev𝑔 : A → E ⊗A E by the following formulas:

ev𝑔 (𝑒 ⊗A 𝑓 ) = 𝑔(𝑒 ⊗A 𝑓 ), coev𝑔 (1) =
∑︁
𝑖

𝜔𝑖 ⊗A 𝑉−1
𝑔 (𝜔∗

𝑖 ).
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Then since 𝑔 is both left and right A-linear, ev𝑔 and coev𝑔 are A-A-bilinear maps. The
bicovariance of 𝑔 implies the bicovariance of ev𝑔 while the bicovariance of coev𝑔 =

(id ⊗A𝑉−1
𝑔 ) ◦ coev follows from the bicovariance of 𝑉𝑔 and coev.

Since the left dual of an object is unique upto isomorphism, we need to check the
following identities for all 𝑒 in E:

(ev𝑔 ⊗A id) (id ⊗A coev𝑔) (𝑒) = 𝑒, (id ⊗A ev𝑔) (coev𝑔 ⊗A id) (𝑒) = 𝑒.

But these follow by a simple computation using the fact that 0E is right A-total in E and
the identity (3.2).
From the above discussion, we have that E and E∗ are two left duals of the object

E in the category A
AMA

A . Then by the proof of Proposition 2.10.5 of [5], we know
that (ev𝑔 ⊗A idE∗ ) (idE ⊗A coev) is an isomorphism from E to E∗. But it can be easily
checked that (ev𝑔 ⊗A idE∗ ) (idE ⊗A coev) = 𝑉𝑔 . This completes the proof. �

Now we state a result on bi-invariant (i.e both left and right-invariant) pseudo-
Riemannian metric.

Proposition 3.10. Let 𝑔 be a pseudo-Riemannian metric on E and the symbols {𝜔𝑖}𝑖 ,
{𝑔𝑖 𝑗 }𝑖 𝑗 be as above. If

EΔ(𝜔𝑖) =
∑︁
𝑗

𝜔 𝑗 ⊗C 𝑅 𝑗𝑖 (3.3)

(see (2.1)), then 𝑔 is bi-invariant if and only if the elements 𝑔𝑖 𝑗 are scalar and

𝑔𝑖 𝑗 =
∑︁
𝑘𝑙

𝑔𝑘𝑙𝑅𝑘𝑖𝑅𝑙 𝑗 . (3.4)

Proof. Since 𝑔 is left-invariant, the elements 𝑔𝑖 𝑗 are inC.1. Moreover, the right-invariance
of 𝑔 implies that 𝑔 is right-covariant (Proposition 3.3), i.e.

1 ⊗C 𝑔𝑖 𝑗 = Δ(𝑔𝑖 𝑗 ) = (𝑔 ⊗A id)E⊗A EΔ(𝜔𝑖 ⊗C 𝜔 𝑗 )

= (𝑔 ⊗A id)
(∑︁

𝑘𝑙

𝜔𝑘 ⊗A 𝜔𝑙 ⊗C 𝑅𝑘𝑖𝑅𝑙 𝑗

)
= 1 ⊗C

∑︁
𝑘𝑙

𝑔𝑘𝑙𝑅𝑘𝑖𝑅𝑙 𝑗 ,

so that
𝑔𝑖 𝑗 =

∑︁
𝑘𝑙

𝑔𝑘𝑙𝑅𝑘𝑖𝑅𝑙 𝑗 . (3.5)

Conversely, if 𝑔𝑖 𝑗 = 𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 ) are scalars and (3.4) is satisfied, then 𝑔 is left-invariant
and right-covariant. By Proposition 3.3, 𝑔 is right-invariant. �

We end this section by comparing our definition of pseudo-Riemannian metrics with
some of the other definitions available in the literature.
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Proposition 3.6 shows that our notion of pseudo-Riemannian metric coincides with
the right A-linear version of a “symmetric metric” introduced in Definition 2.1 of [8] if
we impose the condition of left-invariance.
Next, we compare our definitionwith the one used byBeggs andMajid in Proposition 4.2

of [10] (also see [11] and references therein). To that end, we need to recall the construction
of the two forms by Woronowicz ([16]).
If E is a bicovariantA-bimodule and 𝜎 be the map as in Proposition 2.9, Woronowicz

defined the space of two forms as:

Ω2 (A) := (E ⊗A E)
/
Ker(𝜎 − 1).

The symbol ∧ will denote the quotient map

∧ : E ⊗A E → Ω2 (A).

Thus,
Ker(∧) = Ker(𝜎 − 1). (3.6)

In Proposition 4.2 of [10], the authors define a metric on a bimodule E over a (possibly)
noncommutative algebraA as an element ℎ of E ⊗A E such that ∧(ℎ) = 0.We claim that
metrics in the sense of Beggs and Majid are in one to one correspondence with elements
𝑔 ∈ HomA (E ⊗A E,A) (not necessarily left-invariant) such that 𝑔◦𝜎 = 𝑔. Thus, modulo
the nondegeneracy condition (ii) of Definition 3.1, our notion of pseudo-Riemannian
metric matches with the definition of metric by Beggs and Majid.
Indeed, if 𝑔 ∈ HomA (E ⊗A E,A) as above and {𝜔𝑖}𝑖 , is a basis of 0E, then the

equation 𝑔 ◦ 𝜎 = 𝑔 implies that

𝑔 ◦ 𝜎(𝜔𝑖 ⊗A 𝜔 𝑗 ) = 𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 ).

However, by equation (3.15) of [16], we know that

𝜎(𝜔𝑖 ⊗A 𝜔 𝑗 ) =
∑︁
𝑘,𝑙

𝜎𝑘𝑙
𝑖 𝑗 𝜔𝑘 ⊗A 𝜔𝑙

for some scalars 𝜎𝑘𝑙
𝑖 𝑗
. Therefore, we have∑︁

𝑘,𝑙

𝜎𝑘𝑙
𝑖 𝑗 𝑔(𝜔𝑘 ⊗A 𝜔𝑙) = 𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 ). (3.7)

We claim that the element ℎ =
∑

𝑖, 𝑗 𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 )𝜔𝑖 ⊗A 𝜔 𝑗 satisfies ∧(ℎ) = 0. Indeed,
by virtue of (3.6), it is enough to prove that (𝜎 − 1) (ℎ) = 0. But this directly follows
from (3.7) using the left A-linearity of 𝜎.
This argument is reversible and hence starting from ℎ ∈ E ⊗A E satisfying ∧(ℎ) = 0,

we get an element 𝑔 ∈ HomA (E ⊗A E,A) such that for all 𝑖, 𝑗 ,

𝑔 ◦ 𝜎(𝜔𝑖 ⊗A 𝜔 𝑗 ) = 𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 ).
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Since {𝜔𝑖 ⊗A 𝜔 𝑗 : 𝑖, 𝑗} is right A-total in E ⊗A E (Corollary 2.5) and the maps 𝑔, 𝜎
are right A-linear, we get that 𝑔 ◦ 𝜎 = 𝑔. This proves our claim. Let us note that since
we did not assume 𝑔 to be left invariant, the quantities 𝑔(𝜔𝑖 ⊗A 𝜔 𝑗 ) need not be scalars.
However, the proof goes through since the elements 𝜎𝑖 𝑗

𝑘𝑙
are scalars.

4. Pseudo-Riemannian metrics for cocycle deformations

This section concerns the braiding map and pseudo-Riemannian metrics of bicovariant
bimodules under cocycle deformations of Hopf algebras. This section contains two main
results. We start by recalling that a bicovariant bimodule E over a Hopf algebra A can be
deformed in the presence of a 2-cocycle 𝛾 on A to a bicovariant A𝛾-bimodule E𝛾 .We
prove that the canonical braiding map of the bicovariant bimodule E𝛾 (Proposition 2.9)
is a cocycle deformation of the canonical braiding map of E . Finally, we prove that
pseudo-Riemannian bi-invariant metrics on E and E𝛾 are in one to one correspondence.
Throughout this section, we will make heavy use of the Sweedler notations as spelled

out in (1.1), (1.2) and (1.3). The coassociativity of Δ will be expressed by the following
equation:

(Δ ⊗C id)Δ(𝑎) = (id ⊗CΔ)Δ(𝑎) = 𝑎 (1) ⊗C 𝑎 (2) ⊗C 𝑎 (3) .

Also, when 𝑚 is an element of a bicovariant bimodule, we will use the notation

(id ⊗C𝑀Δ)Δ𝑀 (𝑚) = (Δ𝑀 ⊗C id)𝑀Δ(𝑚) = 𝑚 (−1) ⊗C 𝑚 (0) ⊗C 𝑚 (1) . (4.1)

Definition 4.1. A cocycle 𝛾 on a Hopf algebra (A,Δ) is a C-linear map 𝛾 : A⊗CA → C
such that it is convolution invertible, unital, i.e,

𝛾(𝑎 ⊗C 1) = 𝜖 (𝑎) = 𝛾(1 ⊗C 𝑎)
and for all 𝑎, 𝑏, 𝑐 in A,

𝛾(𝑎 (1) ⊗C 𝑏 (1) )𝛾(𝑎 (2)𝑏 (2) ⊗C 𝑐) = 𝛾(𝑏 (1) ⊗C 𝑐 (1) )𝛾(𝑎 ⊗C 𝑏 (2)𝑐 (2) ). (4.2)

Given a Hopf algebra (A,Δ) and such a cocycle 𝛾 as above, we have a new Hopf
algebra (A𝛾 ,Δ𝛾) which is equal to A as a vector space, the coproduct Δ𝛾 is equal to Δ
while the algebra structure ∗𝛾 on A𝛾 is defined by the following equation:

𝑎 ∗𝛾 𝑏 = 𝛾(𝑎 (1) ⊗C 𝑏 (1) )𝑎 (2)𝑏 (2)𝛾(𝑎 (3) ⊗C 𝑏 (3) ). (4.3)

Here, 𝛾 is the convolution inverse to 𝛾 which is unital and satisfies the following equation:

𝛾(𝑎 (1)𝑏 (1) ⊗C 𝑐)𝛾(𝑎 (2) ⊗C 𝑏 (2) ) = 𝛾(𝑎 ⊗C 𝑏 (1)𝑐 (1) )𝛾(𝑏 (2) ⊗C 𝑐 (2) ). (4.4)

We refer to [4, Theorem 1.6] for more details.
Suppose 𝑀 is a bicovariant A-A-bimodule. Then 𝑀 can also be deformed in the

presence of a cocycle. This is the content of the next proposition.
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Proposition 4.2 ([12, Theorem 2.5]). Suppose 𝑀 is a bicovariant A-bimodule and
𝛾 is a 2-cocycle on A. Then we have a bicovariant A𝛾-bimodule 𝑀𝛾 which is equal
to 𝑀 as a vector space but the left and right A𝛾-module structures are defined by the
following formulas:

𝑎 ∗𝛾 𝑚 = 𝛾(𝑎 (1) ⊗C 𝑚 (−1) )𝑎 (2) .𝑚 (0)𝛾(𝑎 (3) ⊗C 𝑚 (1) ) (4.5)
𝑚 ∗𝛾 𝑎 = 𝛾(𝑚 (−1) ⊗C 𝑎 (1) )𝑚 (0) .𝑎 (2)𝛾(𝑚 (1) ⊗C 𝑎 (3) ), (4.6)

for all elements 𝑚 of 𝑀 and for all elements 𝑎 of A. Here, ∗𝛾 denotes the right and left
A𝛾-module actions, and . denotes the right and left A-module actions.

The A𝛾-bicovariant structures are given by

Δ𝑀𝛾
:= Δ𝑀 : 𝑀𝛾 → A𝛾 ⊗C 𝑀𝛾 and 𝑀𝛾

Δ := 𝑀Δ : 𝑀𝛾 → 𝑀𝛾 ⊗C A𝛾 . (4.7)

Remark 4.3. From Proposition 4.2, it is clear that if 𝑀 is a finite bicovariant bimodule
(see Remark 2.2), then 𝑀𝛾 is also a finite bicovariant bimodule.

We end this subsection by recalling the following result on the deformation of
bicovariant maps.

Proposition 4.4 ([12, Theorem 2.5]). Let (𝑀,Δ𝑀 , 𝑀Δ) and (𝑁,Δ𝑁 , 𝑁Δ) be bicovariant
A-bimodules, 𝑇 : 𝑀 → 𝑁 be a C-linear bicovariant map and 𝛾 be a cocycle as above.
Then there exists a map 𝑇𝛾 : 𝑀𝛾 → 𝑁𝛾 defined by 𝑇𝛾 (𝑚) = 𝑇 (𝑚) for all 𝑚 in 𝑀. Thus,
𝑇𝛾 = 𝑇 as C-linear maps. Moreover, we have the following:

(i) the deformed map 𝑇𝛾 : 𝑀𝛾 → 𝑁𝛾 is an A𝛾 bicovariant map,

(ii) if 𝑇 is a bicovariant right (respectively left)A-linear map, then𝑇𝛾 is a bicovariant
right (respectively left) A𝛾-linear map,

(iii) if (𝑃,Δ𝑃 , 𝑃Δ) is another bicovariant A-bimodule, and 𝑆 : 𝑁 → 𝑃 is a bicovari-
ant map, then (𝑆 ◦𝑇)𝛾 : 𝑀𝛾 → 𝑃𝛾 is a bicovariant map and 𝑆𝛾 ◦𝑇𝛾 = (𝑆 ◦𝑇)𝛾 .

4.1. Deformation of the braiding map

Suppose E is a bicovariant A-bimodule, 𝜎 be the bicovariant braiding map of Propo-
sition 2.9 and 𝑔 be a bi-invariant metric. Then Proposition 4.4 implies that we have
deformed maps 𝜎𝛾 and 𝑔𝛾 . In this subsection, we study the map 𝜎𝛾 . The map 𝑔𝛾 will be
discussed in the next subsection. We will need the following result:
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Proposition 4.5 ([12, Theorem 2.5]). Let (𝑀,Δ𝑀 , 𝑀Δ) and (𝑁,Δ𝑁 , 𝑁Δ) be bicovariant
bimodules over a Hopf algebra A and 𝛾 be a cocycle as above. Then there exists a
bicovariant A𝛾- bimodule isomorphism

𝜉 : 𝑀𝛾 ⊗A𝛾
𝑁𝛾 → (𝑀 ⊗A 𝑁)𝛾 .

The isomorphism 𝜉 and its inverse are respectively given by

𝜉 (𝑚 ⊗A𝛾
𝑛) = 𝛾(𝑚 (−1) ⊗C 𝑛(−1) )𝑚 (0) ⊗A 𝑛(0)𝛾(𝑚 (1) ⊗C 𝑛(1) )

𝜉−1 (𝑚 ⊗A 𝑛) = 𝛾(𝑚 (−1) ⊗C 𝑛(−1) )𝑚 (0) ⊗A𝛾
𝑛(0)𝛾(𝑚 (1) ⊗C 𝑛(1) )

As an illustration, we make the following computation which will be needed later in
this subsection:

Lemma 4.6. Suppose 𝜔 ∈ 0E, 𝜂 ∈ E0. Then the following equation holds:

𝜉−1 (𝛾(𝜂 (−1) ⊗C 1)𝜂 (0) ⊗A 𝜔 (0)𝛾(1 ⊗C 𝜔 (1) )) = 𝜂 ⊗A𝛾
𝜔.

Proof. Let us first clarify that we view 𝛾(𝜂 (−1) ⊗C 1)𝜂 (0) ⊗A 𝜔 (0)𝛾(1 ⊗C 𝜔 (1) ) as an
element in (E ⊗A E)𝛾 . Then the equation holds because of the following computation:

𝜉−1 (𝛾(𝜂 (−1) ⊗C 1)𝜂 (0) ⊗A 𝜔 (0)𝛾(1 ⊗C 𝜔 (1) ))

= 𝛾(𝜂 (−1) ⊗C 1)𝜉−1 (𝜂 (0) ⊗A 𝜔 (0) )𝛾(1 ⊗C 𝜔 (1) )
= 𝛾(𝜂 (−2) ⊗C 1)𝛾(𝜂 (−1) ⊗C 1)𝜂 (0) ⊗A𝛾

𝜔 (0)𝛾(1 ⊗C 𝜔 (1) )𝛾(1 ⊗C 𝜔 (2) )
(since 𝜔 ∈ 0E, 𝜂 ∈ E0)

= 𝜖 (𝜂 (−2) )𝜖 (𝜂 (−1) )𝜂 (0) ⊗A𝛾
𝜔 (0)𝜖 (𝜔 (1) )𝜖 (𝜔 (2) ) (since 𝛾 and 𝛾 are normalised)

= 𝜂 ⊗A𝛾
𝜔. �

Now, we are in a position to study the map 𝜎𝛾 . By Proposition 4.2, E𝛾 is a bicovariant
A𝛾-bimodule. Then Proposition 2.9 guarantees the existence of a canonical braiding
from E𝛾 ⊗A𝛾

E𝛾 to itself. We show that this map is nothing but the deformation 𝜎𝛾 of
the map 𝜎 associated with the bicovariant A-bimodule E. By the definition of 𝜎𝛾 , it is a
map from (E ⊗A E)𝛾 to (E ⊗A E)𝛾 . However, by virtue of Proposition 4.5, the map 𝜉
defines an isomorphism from E𝛾 ⊗A𝛾

E𝛾 to (E ⊗A E)𝛾 . By an abuse of notation, we
will denote the map

𝜉−1𝜎𝛾𝜉 : E𝛾 ⊗A𝛾
E𝛾 → E𝛾 ⊗A𝛾

E𝛾

by the symbol 𝜎𝛾 again.

Theorem 4.7 ([12, Theorem 2.5]). Let E be a bicovariant A-bimodule and 𝛾 be a cocycle
as above. Then the deformation 𝜎𝛾 of 𝜎 is the unique bicovariant A𝛾-bimodule braiding
map on E𝛾 given by Proposition 2.9.
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Proof. Since 𝜎 is a bicovariant A-bimodule map from E ⊗A E to itself, part (ii) of
Proposition 4.4 implies that 𝜎𝛾 is a bicovariant A𝛾-bimodule map from (E ⊗A E)𝛾 �
E𝛾 ⊗A𝛾

E𝛾 to itself. By Proposition 2.9, there exists a uniqueA𝛾-bimodule map 𝜎′ from
E𝛾 ⊗A𝛾

E𝛾 to itself such that 𝜎′(𝜔 ⊗A𝛾
𝜂) = 𝜂 ⊗A𝛾

𝜔 for all 𝜔 in 0 (E𝛾), 𝜂 in (E𝛾)0.
Since 0 (E𝛾) = 0E and (E𝛾)0 = E0, it is enough to prove that 𝜎𝛾 (𝜔 ⊗A𝛾

𝜂) = 𝜂 ⊗A𝛾
𝜔

for all 𝜔 in 0E, 𝜂 in E0.
We will need the concrete isomorphism between E𝛾 ⊗A𝛾

E𝛾 and (E ⊗A E)𝛾 defined
in Proposition 4.5. Since 𝜔 is in 0E and 𝜂 is in E0, this isomorphism maps the element
𝜔 ⊗A𝛾

𝜂 to 𝛾(1 ⊗C 𝜂 (−1) )𝜔 (0) ⊗A 𝜂 (0)𝛾(𝜔 (1) ⊗C 1). Then, by the definition of 𝜎𝛾 , we
compute the following:

𝜎𝛾 (𝜔 ⊗A𝛾
𝜂) = 𝜎(𝛾(1 ⊗C 𝜂 (−1) )𝜔 (0) ⊗A 𝜂 (0)𝛾(𝜔 (1) ⊗C 1))

= 𝜎(𝜖 (𝜂 (−1) )𝜔 (0) ⊗A 𝜂 (0)𝜖 (𝜔 (1) )) = 𝜖 (𝜂 (−1) )𝜂 (0) ⊗A 𝜔 (0)𝜖 (𝜔 (1) )
= 𝛾(𝜂 (−1) ⊗C 1)𝜂 (0) ⊗A 𝜔 (0)𝛾(1 ⊗C 𝜔 (1) ) = 𝜂 ⊗A𝛾

𝜔,

where, in the last step we have used Lemma 4.6. �

Remark 4.8. Proposition 4.2, Proposition 4.4, Proposition 4.5 and Theorem 4.7 together
imply that the categories A

AMA
A and

A𝛾

A𝛾
MA𝛾

A𝛾
are isomorphic as braided monoidal

categories. This was the content of Theorem 2.5 of [12]. The referee has pointed out that
this is a special case of a much more generalized result of Bichon ([3, Theorem 6.1])
which says that if two Hopf algebras are monoidally equivalent, then the corresponding
categories of right-right Yetter Drinfeld modules are also monoidally equivalent.
However, in Theorem 4.7, we have proved in addition that the braiding on A𝛾

A𝛾
MA𝛾

A𝛾
is

precisely the Woronowicz braiding of Proposition 2.9.

Corollary 4.9. If the unique bicovariant A-bimodule braiding map 𝜎 for a bicovariant
A-bimodule E satisfies the equation 𝜎2 = 1, then the bicovariant A𝛾-bimodule braiding
map 𝜎𝛾 for the bicovariant A𝛾-bimodule E𝛾 also satisfies 𝜎2𝛾 = 1.

In particular, if A is the commutative Hopf algebra of regular functions on a compact
semisimple Lie group 𝐺 and E is its canonical space of one-forms, then the braiding map
𝜎𝛾 for E𝛾 satisfies 𝜎2𝛾 = 1.

Proof. By Theorem 4.7, 𝜎𝛾 is the unique braiding map for the bicovariant A𝛾-bimodule
E𝛾 . Since, by our hypothesis, 𝜎2 = 1, the deformed map 𝜎𝛾 also satisfies 𝜎2𝛾 = 1 by
part (ii) of Proposition 4.4.
Next, if A is a commutative Hopf algebra as in the statement of the corollary and E is

its canonical space of one-forms, then we know that the braiding map 𝜎 is just the flip
map, i.e. for all 𝑒1, 𝑒2 in E,

𝜎(𝑒1 ⊗A 𝑒2) = 𝑒2 ⊗A 𝑒1,
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and hence it satisfies 𝜎2 = 1. Therefore, for every cocycle deformation E𝛾 of E, the
corresponding braiding map satisfies 𝜎2𝛾 = 1. �

4.2. Pseudo-Riemannian bi-invariant metrics on E𝛾

Suppose E is a bicovariant A-bimodule and E𝛾 be its cocycle deformation as above.
The goal of this subsection is to prove that a pseudo-Riemannian bi-invariant metric
on E naturally deforms to a pseudo-Riemannian bi-invariant metric on E𝛾 . Since 𝑔 is a
bicovariant (i.e, both left and right covariant) map from the bicovariant bimodule E ⊗A E
to itself, then by Proposition 4.4, we have a right A𝛾-linear bicovariant map 𝑔𝛾 from
E𝛾 ⊗A𝛾

E𝛾 to itself. We need to check the conditions (i) and (ii) of Definition 3.1 for the
map 𝑔𝛾 .
The proof of the equality 𝑔𝛾 = 𝑔𝛾 ◦ 𝜎𝛾 is straightforward. However, checking

condition (ii), i.e, verifying that the map 𝑉𝑔𝛾 is an isomorphism onto its image needs
some work. The root of the problem is that we do not yet know whether E∗ = 𝑉𝑔 (E). Our
strategy to verify condition (ii) is the following: we show that the right A-module 𝑉𝑔 (E)
is a bicovariant right A-module (see Definition 4.10) in a natural way. Let us remark
that since the map 𝑔 (hence 𝑉𝑔) is not left A-linear, 𝑉𝑔 (E) need not be a left A-module.
Since bicovariant right A-modules and bicovariant maps between them can be deformed
(Proposition 4.13), the map 𝑉𝑔 deforms to a right A𝛾-linear isomorphism from E𝛾 to
(𝑉𝑔 (E))𝛾 . Then in Theorem 4.15, we show that (𝑉𝑔)𝛾 coincides with the map 𝑉𝑔𝛾 and
the latter is an isomorphism onto its image. This is the only subsection where we use the
theory of bicovariant right modules (as opposed to bicovariant bimodules).

Definition 4.10. Let 𝑀 be a right A-module, and Δ𝑀 : 𝑀 → A ⊗C 𝑀 and 𝑀Δ : 𝑀 →
𝑀 ⊗C A be C-linear maps. We say that (𝑀,Δ𝑀 , 𝑀Δ) is a bicovariant rightA-module if
the triplet is an object of the category AMA

A , i.e,

(i) (𝑀,Δ𝑀 ) is a left A-comodule,

(ii) (𝑀, 𝑀Δ) is a right A-comodule,

(iii) (id ⊗C𝑀Δ)Δ𝑀 = (Δ𝑀 ⊗C id)𝑀Δ,

(iv) For any 𝑎 in A and 𝑚 in 𝑀 ,

Δ𝑀 (𝑚𝑎) = Δ𝑀 (𝑚)Δ(𝑎), 𝑀Δ(𝑚𝑎) = 𝑀Δ(𝑚)Δ(𝑎).

For the rest of the subsection, E will denote a bicovariant A-bimodule. Moreover,
{𝜔𝑖}𝑖 will denote a basis of 0E and {𝜔∗

𝑖
}𝑖 the dual basis, i.e, 𝜔∗

𝑖
(𝜔 𝑗 ) = 𝛿𝑖 𝑗 .
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Let us recall that (2.1) implies the existence of elements 𝑅𝑖 𝑗 in A such that

EΔ(𝜔𝑖) =
∑︁
𝑖 𝑗

𝜔 𝑗 ⊗C 𝑅 𝑗𝑖 . (4.8)

We want to show that 𝑉𝑔 (E) is a bicovariant right A-module. To this end, we recall that
(Lemma 3.7) 𝑉𝑔 (E) is a free right A-module with basis {𝜔∗

𝑖
}𝑖 . This allows us to make

the following definition.

Definition 4.11. Let {𝜔𝑖}𝑖 and {𝜔∗
𝑖
}𝑖 be as above and 𝑔 a bi-invariant pseudo-Riemannian

metric on E. Then we can endow 𝑉𝑔 (E) with a left-coaction Δ𝑉𝑔 (E) : 𝑉𝑔 (E) →
A ⊗C 𝑉𝑔 (E) and a right-coaction 𝑉𝑔 (E)Δ : 𝑉𝑔 (E) → 𝑉𝑔 (E) ⊗C A, defined by the
formulas

Δ𝑉𝑔 (E)

(∑︁
𝑖

𝜔∗
𝑖 𝑎𝑖

)
=

∑︁
𝑖

(1 ⊗C 𝜔∗
𝑖 )Δ(𝑎𝑖), 𝑉𝑔 (E)Δ

(∑︁
𝑖

𝜔∗
𝑖 𝑎𝑖

)
=

∑︁
𝑖 𝑗

(𝜔∗
𝑗 ⊗C 𝑆(𝑅𝑖 𝑗 ))Δ(𝑎𝑖),

(4.9)

where the elements 𝑅𝑖 𝑗 are as in (4.8).

Then we have the following result.

Proposition 4.12. The triplet (𝑉𝑔 (E),Δ𝑉𝑔 (E) , 𝑉𝑔 (E)Δ) is a bicovariant right A-module.
Moreover, the map 𝑉𝑔 : E → 𝑉𝑔 (E) is bicovariant, i.e, we have

Δ𝑉𝑔 (E) (𝑉𝑔 (𝑒)) = (id ⊗C𝑉𝑔)ΔE (𝑒), 𝑉𝑔 (E)Δ(𝑉𝑔 (𝑒)) = (𝑉𝑔 ⊗C id)EΔ(𝑒). (4.10)

Proof. The fact that (𝑉𝑔 (E),Δ𝑉𝑔 (E) , 𝑉𝑔 (E)Δ) is a bicovariant right A-module follows
immediately from the definition of the maps Δ𝑉𝑔 (E) and 𝑉𝑔 (E)Δ. So we are left with
proving (4.10). Let 𝑒 ∈ E . Then there exist elements 𝑎𝑖 in A such that 𝑒 =

∑
𝑖 𝜔𝑖𝑎𝑖 .

Hence, by (3.1), we obtain

Δ𝑉𝑔 (E) (𝑉𝑔 (𝑒)) = Δ𝑉𝑔 (E)

(
𝑉𝑔

(∑︁
𝑖

𝜔𝑖𝑎𝑖

))
= Δ𝑉𝑔 (E)

(∑︁
𝑖 𝑗

𝑔𝑖 𝑗𝜔
∗
𝑗𝑎𝑖

)
=

∑︁
𝑖 𝑗

(1 ⊗C 𝑔𝑖 𝑗𝜔∗
𝑗 )Δ(𝑎𝑖) =

∑︁
𝑖

((id ⊗C𝑉𝑔) (1 ⊗C 𝜔𝑖))Δ(𝑎𝑖)

=
∑︁
𝑖

(id ⊗C𝑉𝑔) (ΔE (𝜔𝑖))Δ(𝑎𝑖)

=
∑︁
𝑖

(id ⊗C𝑉𝑔)ΔE (𝜔𝑖𝑎𝑖) = (id ⊗C𝑉𝑔)ΔE (𝑒).

This proves the first equation of (4.10).
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For the second equation, we begin by making an observation. Since EΔ(𝜔𝑖) =∑
𝑗 𝜔 𝑗 ⊗C 𝑅 𝑗𝑖 , we have

𝛿𝑖 𝑗 = 𝜖 (𝑅𝑖 𝑗 ) = 𝑚(𝑆 ⊗C id)Δ(𝑅𝑖 𝑗 ) =
∑︁
𝑘

𝑆(𝑅𝑖𝑘 )𝑅𝑘 𝑗 .

Therefore, multiplying (3.5) by 𝑆(𝑅 𝑗𝑚) and summing over 𝑗 , we obtain∑︁
𝑗

𝑔𝑖 𝑗𝑆(𝑅 𝑗𝑚) =
∑︁
𝑗

𝑔 𝑗𝑚𝑅 𝑗𝑖 . (4.11)

Now by using (3.1), we compute

𝑉𝑔 (E)Δ(𝑉𝑔 (𝑒)) = 𝑉𝑔 (E)Δ

(
𝑉𝑔

(∑︁
𝑖

𝜔𝑖𝑎𝑖

))
= 𝑉𝑔 (E)Δ

(∑︁
𝑖 𝑗

𝑔𝑖 𝑗𝜔
∗
𝑗𝑎𝑖

)
=

∑︁
𝑖 𝑗

𝑉𝑔 (E)Δ(𝑔𝑖 𝑗𝜔∗
𝑗 )Δ(𝑎𝑖) =

∑︁
𝑖 𝑗𝑘

𝑔𝑖 𝑗𝜔
∗
𝑘 ⊗C 𝑆(𝑅 𝑗𝑘 )Δ(𝑎𝑖)

=
∑︁
𝑖𝑘

𝜔∗
𝑘 ⊗C

∑︁
𝑗

𝑔𝑖 𝑗𝑆(𝑅 𝑗𝑘 )Δ(𝑎𝑖)

=
∑︁
𝑖𝑘

𝜔∗
𝑘 ⊗C

∑︁
𝑗

𝑔 𝑗𝑘𝑅 𝑗𝑖Δ(𝑎𝑖) (by (4.11))

=
∑︁
𝑖 𝑗𝑘

𝑔 𝑗𝑘𝜔
∗
𝑘 ⊗C 𝑅 𝑗𝑖Δ(𝑎𝑖) =

∑︁
𝑖 𝑗

𝑉𝑔 (𝜔 𝑗 ) ⊗C 𝑅 𝑗𝑖Δ(𝑎𝑖)

=
∑︁
𝑖

(𝑉𝑔 ⊗C id)EΔ(𝜔𝑖)Δ(𝑎𝑖) (by (4.8))

=
∑︁
𝑖

(𝑉𝑔 ⊗C id)EΔ(𝜔𝑖𝑎𝑖) = (𝑉𝑔 ⊗C id)EΔ(𝑒).

This finishes the proof. �

Now we recall that bicovariant right A-modules (i.e, objects of the category AMA
A )

can be deformed too.

Proposition 4.13 ([14, Theorem 5.7]). Let (𝑀,Δ𝑀 , 𝑀Δ) be a bicovariant rightA-module
and 𝛾 be a 2-cocycle on A. Then

(i) 𝑀 deforms to a bicovariant right A𝛾-module, denoted by 𝑀𝛾 ,

(ii) if (𝑁,Δ𝑁 , 𝑁Δ) is another bicovariant right A-module and 𝑇 : 𝑀 → 𝑁 is
a bicovariant right A-linear map, then the deformation 𝑇𝛾 : 𝑀𝛾 → 𝑁𝛾 is a
bicovariant right A𝛾-linear map,

(iii) 𝑇𝛾 , as in (ii), is an isomorphism if and only if 𝑇 is an isomorphism.

176



Pseudo-Riemannian metrics on bicovariant bimodules

Proof. Parts (i) and (ii) follow from the equivalence of categories AM and A𝛾M
combined with the AMA

A analogue of (non-monoidal part of) the second assertion of
Proposition 5.7 of [14]. Part (iii) follows by noting that since the map 𝑇 is a bicovariant
right A-linear map, its inverse 𝑇−1 is also a bicovariant right A-linear map. Thus, the
deformation (𝑇−1)𝛾 of 𝑇−1 exists and is the inverse of the map 𝑇𝛾 . �

As an immediate corollary, we make the following observation.

Corollary 4.14. Let 𝑔 be a bi-invariant pseudo-Riemannian metric on a bicovariant
A-bimodule E. Then the following map is a well-defined isomorphism.

(𝑉𝑔)𝛾 : E𝛾 → (𝑉𝑔 (E))𝛾 = (𝑉𝑔)𝛾 (E𝛾)

Proof. Since both E and 𝑉𝑔 (E) are bicovariant right A-modules, and 𝑉𝑔 is a right
A-linear bicovariant map (Proposition 4.12), Proposition 4.13 guarantees the existence of
(𝑉𝑔)𝛾 . Since 𝑔 is a pseudo-Riemannian metric, by (ii) of Definition 3.1, 𝑉𝑔 : E → 𝑉𝑔 (E)
is an isomorphism. Then, by (iii) of Proposition 4.13, (𝑉𝑔)𝛾 is also an isomorphism. �

Now we are in a position to state and prove the main result of this section which shows
that there is an abundant supply of bi-invariant pseudo-Riemannian metrics on E𝛾 . Since
𝑔 is a map from E ⊗A E to A, 𝑔𝛾 is a map from (E ⊗A E)𝛾 to A𝛾 . But we have the
isomorphism 𝜉 from E𝛾 ⊗A𝛾

E𝛾 to (E ⊗A E)𝛾 (Proposition 4.5). As in Subsection 4.1,
we will make an abuse of notation to denote the map 𝑔𝛾𝜉−1 by the symbol 𝑔𝛾 .

Theorem 4.15. If 𝑔 is a bi-invariant pseudo-Riemannian metric on a finite bicovariant
A-bimodule E (as in Remark 2.2) and 𝛾 is a 2-cocycle on A, then 𝑔 deforms to a right
A𝛾-linear map 𝑔𝛾 from E𝛾 ⊗A𝛾

E𝛾 to itself. Moreover, 𝑔𝛾 is a bi-invariant pseudo-
Riemannian metric on E𝛾 . Finally, any bi-invariant pseudo-Riemannian metric on E𝛾 is
a deformation (in the above sense) of some bi-invariant pseudo-Riemannian metric on E.

Proof. Since 𝑔 is a rightA-linear bicovariant map (Proposition 3.3), 𝑔 indeed deforms to
a rightA𝛾-linear map 𝑔𝛾 from (E ⊗A E)𝛾 � E𝛾 ⊗A𝛾

E𝛾 (see Proposition 4.5) toA𝛾 . The
second assertion of Proposition 4.4 implies that 𝑔𝛾 is bicovariant. Then Proposition 3.3
implies that 𝑔𝛾 is bi-invariant. Since 𝑔 ◦ 𝜎 = 𝑔, part (iii) of Proposition 4.4 implies that

𝑔𝛾 = (𝑔 ◦ 𝜎)𝛾 = 𝑔𝛾 ◦ 𝜎𝛾 .

This verifies condition (i) of Definition 3.1
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Next, we prove that 𝑔𝛾 satisfies (ii) of Definition 3.1. Let𝜔 be an element of 0E = 0 (E𝛾)
and 𝜂 be an element of E0 = (E𝛾)0. Then we have

(𝑉𝑔)𝛾 (𝜔) (𝜂) = (𝑉𝑔 (𝜔))𝛾 (𝜂) = 𝑉𝑔 (𝜔) (𝜂)
= 𝑔(𝜔 ⊗A 𝜂) = 𝑔𝛾 (𝛾(1 ⊗C 𝜂 (−1) )𝜔 (0) ⊗A𝛾

𝜂 (0)𝛾(𝜔 (1) ⊗C 1))

(by the definition of 𝜉−1 in Proposition 4.5)
= 𝑔𝛾 (𝜖 (𝜂 (−1) )𝜔 (0) ⊗A𝛾

𝜂 (0)𝜖 (𝜔 (1) )) = 𝑔𝛾 (𝜔 ⊗A𝛾
𝜂) = 𝑉𝑔𝛾 (𝜔) (𝜂).

Then, by the right-A𝛾 linearity of (𝑉𝑔)𝛾 (𝜔) and 𝑉𝑔𝛾 (𝜔), we get, for all 𝑎 in A,

𝑉𝑔𝛾 (𝜔) (𝜂 ∗𝛾 𝑎) = 𝑉𝑔𝛾 (𝜔) (𝜂) ∗𝛾 𝑎 = (𝑉𝑔)𝛾 (𝜔) (𝜂) ∗𝛾 𝑎 = (𝑉𝑔)𝛾 (𝜔) (𝜂 ∗𝛾 𝑎).

Therefore, by the right A-totality of (E𝛾)0 = E0 in E𝛾 , we conclude that the maps (𝑉𝑔)𝛾
and 𝑉𝑔𝛾 agree on 0 (E𝛾). But since 0 (E𝛾) = 0E is right A𝛾-total in E𝛾 and both 𝑉𝑔𝛾 and
(𝑉𝑔)𝛾 are right-A𝛾 linear, (𝑉𝑔)𝛾 = 𝑉𝑔𝛾 on the whole of E𝛾 .
Next, since 𝑉𝑔 is a right A-linear isomorphism from E to 𝑉𝑔 (E), hence by Corol-

lary 4.14, (𝑉𝑔)𝛾 is an isomorphism onto (𝑉𝑔 (E))𝛾 = (𝑉𝑔)𝛾 (E𝛾) = 𝑉𝑔𝛾 (E𝛾). Therefore
𝑉𝑔𝛾 is an isomorphism from E𝛾 to 𝑉𝑔𝛾 (E𝛾). Hence 𝑔𝛾 satisfies (ii) of Definition 3.1.
To show that every pseudo-Riemannian metric on E𝛾 is obtained as a deformation of a

pseudo-Riemannian metric on E, we view E as a cocycle deformation of E𝛾 under the
cocycle 𝛾−1. Then given a pseudo-Riemannian metric 𝑔′ on E𝛾 , by the first part of this
proof, (𝑔′)𝛾−1 is a bi-invariant pseudo-Riemannian metric on E. Hence, 𝑔′ = ((𝑔′)𝛾−1 )𝛾
is indeed a deformation of the bi-invariant pseudo-Riemannian metric (𝑔′)𝛾−1 on E. �

Remark 4.16. We have actually used the fact that E is finite in order to prove Theorem 4.15.
Indeed, since E is finite, we can use the results of Section 3 to derive Proposition 4.12
which is then used to prove Corollary 4.14. Finally, Corollary 4.14 is used to prove
Theorem 4.15.
Also note that the proof of Theorem 4.15 also implies that the maps (𝑉𝑔)𝛾 and 𝑉𝑔𝛾

are equal.

When 𝑔 is a pseudo-Riemannian bicovariant bilinear metric on E, then we have a
much shorter proof of the fact that 𝑔𝛾 is a pseudo-Riemannian metric on E𝛾 which avoids
bicovariant right A-modules. We learnt the proof of this fact from communications
with the referee and is as follows: We will work in the categories A

AMA
A and

A𝛾

A𝛾
MA𝛾

A𝛾
.

Firstly, as 𝑔 is bilinear, 𝑉𝑔 is a morphism of the category A
AMA

A . and can be deformed
to a bicovariant A𝛾-bilinear map (𝑉𝑔)𝛾 from E𝛾 to (E∗)𝛾 . Similarly, 𝑔 deforms to a
A𝛾-bilinear map from E𝛾 ⊗A𝛾

E𝛾 to A𝛾 . Then as in the proof of Theorem 4.15, we can
easily check that (𝑉𝑔)𝛾 = 𝑉𝑔𝛾 .
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On the other hand, it is well-known that the left dual Ẽ of E is isomorphic to E∗. Since
𝑔 is bilinear, Proposition 3.9 implies that the morphism 𝑉𝑔 (in the category A

AMA
A ) is an

isomorphism from E to E∗.

Therefore,we have an isomorphism (𝑉𝑔)𝛾 is an isomorphism fromE𝛾 to (E∗)𝛾 � (E𝛾)∗
by Exercise 2.10.6 of [5]. As (𝑉𝑔)𝛾 = 𝑉𝑔𝛾 , we deduce that 𝑉𝑔𝛾 is an isomorphism from
E𝛾 to (E𝛾)∗. Since the equation 𝑔𝛾 ◦ 𝜎𝛾 = 𝑔𝛾 , this completes the proof.
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