We define -genericity and -largeness for a subset of a group, and determine the value of for which a -large subset of is already the whole of , for various equationally defined subsets. We link this with the inner measure of the set of solutions of an equation in a group, leading to new results and/or proofs in equational probabilistic group theory.
Mots clés : probabilistic group theory, largeness
Khaled Jaber 1 ; Frank O. Wagner 2
@article{AMBP_2020__27_1_1_0, author = {Khaled Jaber and Frank O. Wagner}, title = {Largeness and equational probability in groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--17}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {27}, number = {1}, year = {2020}, doi = {10.5802/ambp.388}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.388/} }
TY - JOUR AU - Khaled Jaber AU - Frank O. Wagner TI - Largeness and equational probability in groups JO - Annales mathématiques Blaise Pascal PY - 2020 SP - 1 EP - 17 VL - 27 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.388/ DO - 10.5802/ambp.388 LA - en ID - AMBP_2020__27_1_1_0 ER -
%0 Journal Article %A Khaled Jaber %A Frank O. Wagner %T Largeness and equational probability in groups %J Annales mathématiques Blaise Pascal %D 2020 %P 1-17 %V 27 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.388/ %R 10.5802/ambp.388 %G en %F AMBP_2020__27_1_1_0
Khaled Jaber; Frank O. Wagner. Largeness and equational probability in groups. Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 1, pp. 1-17. doi : 10.5802/ambp.388. https://ambp.centre-mersenne.org/articles/10.5802/ambp.388/
[1] Some supersolvability conditions for finite groups, Math. Proc. R. Ir. Acad., Volume 106 (2006) no. 2, pp. 163-177 | DOI | MR | Zbl
[2] Groups with the minimal condition on centralizers, J. Algebra, Volume 60 (1979), pp. 371-383 | DOI | MR
[3] On some problems of a statistical group theory. IV, Acta Math. Acad. Sci. Hung., Volume 19 (1968), pp. 413-435 | DOI | MR | Zbl
[4] On the probability that a group satisfies a law: A survey, Kyoto Univ. Res. Inform. Repos., Volume 1965 (2015), pp. 158-179
[5] Verallgemeinerung des Sylowschen Satzes, Sitzungsber. K. Preuss. Akad. Wiss. Berlin, Volume II (1895), pp. 981-993
[6] What is the probability that two group elements commute?, Am. Math. Mon., Volume 80 (1973), pp. 1031-1034 | DOI | MR | Zbl
[7] Restrictions on commutativity ratios in finite groups, Int. J. Group Theory, Volume 3 (2014) no. 4, pp. 1-12 | MR
[8] On a conjecture of Frobenius, Bull. Am. Math. Soc., Volume 25 (1991) no. 2, pp. 413-416 | DOI | MR | Zbl
[9] Largeur et nilpotence, Commun. Algebra, Volume 28 (2000) no. 6, pp. 2869-2885 | DOI | MR | Zbl
[10] Several conjectures on commutativity in algebraic structures, Am. Math. Mon., Volume 84 (1977), pp. 550-551 | DOI | MR
[11] The number of solutions of in a -group, Math. Z., Volume 149 (1976), pp. 43-45 | DOI | MR | Zbl
[12] The number of solutions of in a finite group, Proc. Camb. Philos. Soc., Volume 80 (1976), pp. 229-231 | DOI | MR | Zbl
[13] The number of solutions of in finite groups, Math. Proc. R. Ir. Acad., Volume 79 (1979), pp. 29-36 | MR | Zbl
[14] Note on the possible number of operators of order in a group of order , Ann. Math., Volume 7 (1906), pp. 55-60 | DOI | MR | Zbl
[15] Groups covered by permutable subsets, J. Lond. Math. Soc., Volume 29 (1954), pp. 236-248 | DOI | MR
[16] Two combinatorial problems in group theory, Bull. Lond. Math. Soc., Volume 21 (1989) no. 5, pp. 456-458 | DOI | MR | Zbl
[17] Probability that the commutator of two group elements is equal to a given element, J. Pure Appl. Algebra, Volume 212 (2008) no. 4, pp. 727-734 | DOI | MR | Zbl
[18] What is the probability that two elements of a finite group commute?, Pac. J. Math., Volume 82 (1979), pp. 237-247 | DOI | MR | Zbl
[19] What is the probability an automorphism fixes a group element?, Am. Math. Mon., Volume 82 (1975), pp. 261-264 | DOI | MR | Zbl
Cité par Sources :