[Les diagrammes Makanin–Razborov pour les groupes hyperboliques]
Nous proposons une présentation détaillée de la construction des diagrammes de Makanin–Razborov de Zlil Sela qui décrivent pour un groupe de type fini et un groupe hyperbolique . De plus, nous traitons le cas où est un groupe ayant de la torsion.
We give a detailed account of Zlil Sela’s construction of Makanin–Razborov diagrams describing where is a finitely generated group and is a hyperbolic group. We also deal with the case where has torsion.
Richard Weidmann 1 ; Cornelius Reinfeldt 2
@article{AMBP_2019__26_2_119_0, author = {Richard Weidmann and Cornelius Reinfeldt}, title = {Makanin{\textendash}Razborov diagrams for hyperbolic groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {119--208}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {26}, number = {2}, year = {2019}, doi = {10.5802/ambp.387}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.387/} }
TY - JOUR AU - Richard Weidmann AU - Cornelius Reinfeldt TI - Makanin–Razborov diagrams for hyperbolic groups JO - Annales mathématiques Blaise Pascal PY - 2019 SP - 119 EP - 208 VL - 26 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.387/ DO - 10.5802/ambp.387 LA - en ID - AMBP_2019__26_2_119_0 ER -
%0 Journal Article %A Richard Weidmann %A Cornelius Reinfeldt %T Makanin–Razborov diagrams for hyperbolic groups %J Annales mathématiques Blaise Pascal %D 2019 %P 119-208 %V 26 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.387/ %R 10.5802/ambp.387 %G en %F AMBP_2019__26_2_119_0
Richard Weidmann; Cornelius Reinfeldt. Makanin–Razborov diagrams for hyperbolic groups. Annales mathématiques Blaise Pascal, Tome 26 (2019) no. 2, pp. 119-208. doi : 10.5802/ambp.387. https://ambp.centre-mersenne.org/articles/10.5802/ambp.387/
[1] Notes on word hyperbolic groups, Group theory from a geometrical viewpoint, World Scientific, 1991, pp. 3-63 | Zbl
[2] Algebraic geometry over groups I: Algebraic sets and ideal theory, J. Algebra, Volume 219 (1999) no. 1, pp. 16-79 | DOI | MR
[3] -trees in topology, geometry, and group theory, Handbook of geometric topology, Elsevier, 2002, pp. 55-91
[4] Bounding the complexity of simplicial group actions on trees, Invent. Math., Volume 103 (1991) no. 3, pp. 449-469 | DOI | MR
[5] Stable actions of groups on real trees, Invent. Math., Volume 121 (1995) no. 2, pp. 287-321 | DOI | MR | Zbl
[6] Notes on Sela’s work: Limit groups and Makanin–Razborov diagrams, Geometric and cohomological methods in group theory (London Mathematical Society Lecture Note Series), Volume 358, Cambridge University Press, 2009, pp. 1-29 | MR
[7] Finite subgroups of hyperbolic groups, Algebra Logic, Volume 34 (1996) no. 6, pp. 343-345 | DOI | MR
[8] A note on finite subgroups of hyperbolic groups, Int. J. Algebra Comput., Volume 10 (2000) no. 4, pp. 399-405 | DOI | MR
[9] Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999 | MR
[10] On systems of equations over free products of groups, J. Algebra, Volume 333 (2011) no. 1, pp. 368-426 | DOI | MR
[11] Foliations for solving equations in groups: free, virtually free and hyperbolic groups, J. Topol., Volume 3 (2010) no. 2, pp. 343-404 | DOI | MR | Zbl
[12] The accessibility of finitely presented groups, Invent. Math., Volume 81 (1985), pp. 449-457 | DOI | MR
[13] Groups acting on protrees, J. Lond. Math. Soc., Volume 56 (1997), pp. 125-136 | DOI | MR
[14] On the finiteness of higher knot sums, Topology, Volume 26 (1987), pp. 337-343 | DOI | MR
[15] JSJ-splittings for finitely presented groups over slender groups, Invent. Math., Volume 135 (1999) no. 1, pp. 25-44 | DOI | MR | Zbl
[16] JSJ-decomposition of finitely presented groups and complexes of groups, Geom. Funct. Anal., Volume 16 (2006) no. 1, pp. 70-125 | DOI | MR | Zbl
[17] Pseudogroups of isometries of and Rips’ theorem on free actions on -trees, Isr. J. Math., Volume 87 (1994) no. 1-3, pp. 403-428 | DOI | MR | Zbl
[18] Sur les groupes hyperboliques d’après Mikhael Gromov (Etienne Ghys; Pierre de la Harpe, eds.), Progress in Mathematics, 83, Birkhäuser, 1990 | Zbl
[19] Limit groups for relatively hyperbolic groups. II. Makanin–Razborov diagrams, Geom. Topol., Volume 9 (2005), pp. 2319-2358 | DOI | MR | Zbl
[20] Equivalence of infinite systems of equations in free groups and semigroups to finite subsystems, Mat. Zametki, Volume 48 (1986) no. 3, pp. 321-324 | MR | Zbl
[21] Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998) no. 1, pp. 89-121 | DOI | MR | Zbl
[22] Actions of finitely generated groups on -trees, Ann. Inst. Fourier, Volume 58 (2008) no. 1, pp. 159-211 | DOI | Numdam | MR | Zbl
[23] JSJ decompositions of groups, Astérisque, 395, Société Mathématique de France, 2017, vii+165 pages | Zbl
[24] Foldings, graphs of groups and the membership problem, Int. J. Algebra Comput., Volume 15 (2005) no. 1, pp. 95-128 | DOI | MR
[25] Representations of polygons of finite groups, Geom. Topol., Volume 9 (2005), pp. 1915-1951 | DOI | MR
[26] Irreducible affine varieties over a free group. I. Irreducibility of quadratic equations and Nullstellensatz, J. Algebra, Volume 200 (1998) no. 2, pp. 472-516 | DOI | MR | Zbl
[27] Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra, Volume 200 (1998) no. 2, pp. 517-570 | MR | Zbl
[28] Croissance uniforme dans les groupes hyperboliques, Ann. Inst. Fourier, Volume 48 (1998) no. 5, pp. 1441-1453 | DOI | MR
[29] Graphs of actions on -trees, Comment. Math. Helv., Volume 69 (1994) no. 1, pp. 28-38 | DOI | MR | Zbl
[30] On accessibility of groups, J. Pure Appl. Algebra, Volume 30 (1983), pp. 39-46 | DOI | MR
[31] Equations in a free group, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 46 (1982), pp. 1188-1273 | MR
[32] Systems of equations in a free group, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 48 (1984) no. 4, pp. 779-832 | MR
[33] On Systems of Equations in a Free Group, Ph. D. Thesis (1987)
[34] Limit groups and Makanin–Razborov diagrams for hyperbolic groups, Ph. D. Thesis (2010)
[35] Structure and rigidity in hyperbolic groups I, Geom. Funct. Anal., Volume 4 (1994) no. 3, pp. 337-371 | DOI | MR
[36] Cyclic splittings of finitely presented groups and the canonical JSJ-decomposition, Ann. Math., Volume 146 (1997) no. 1, pp. 53-109 | DOI | MR
[37] The geometries of -manifolds, Bull. Lond. Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | DOI | MR
[38] Acylindrical accessibility, Invent. Math., Volume 129 (1997) no. 3, pp. 527-565 | DOI | MR
[39] Endomorphisms of hyperbolic groups. I. The Hopf property, Topology, Volume 38 (1999) no. 2, pp. 301-321 | DOI | MR
[40] Diophantine geometry over groups. I: Makanin–Razborov diagrams, Publ. Math., Inst. Hautes Étud. Sci., Volume 93 (2001), pp. 31-105 | DOI | Numdam | MR
[41] Diophantine geometry over groups. VII: The elementary theory of a hyperbolic group, Proc. Lond. Math. Soc., Volume 99 (2009) no. 1, pp. 217-273 | DOI | MR
[42] Trees, 146, Springer, 1980, ix+142 pages
[43] Poincaré Complexes: I, Ann. Math., Volume 86 (1967), pp. 213-245 | DOI | Zbl
[44] The Nielsen method for groups acting on trees, Proc. Lond. Math. Soc., Volume 85 (2002) no. 1, pp. 93-118 | DOI | MR | Zbl
[45] On accessibility of finitely generated groups, Q. J. Math, Volume 63 (2012) no. 1, pp. 211-225 | DOI | MR
[46] Surfaces and planar discontinuous groups, Lecture Notes in Mathematics, 835, Springer, 1980 | MR
Cité par Sources :