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Makanin–Razborov diagrams for hyperbolic groups

Richard Weidmann
Cornelius Reinfeldt

Abstract

We give a detailed account of Zlil Sela’s construction of Makanin–Razborov diagrams describing
Hom(G, Γ) whereG is a finitely generated group and Γ is a hyperbolic group. We also deal with the case
where Γ has torsion.

Les diagrammes Makanin–Razborov pour les groupes hyperboliques
Résumé

Nous proposons une présentation détaillée de la construction des diagrammes de Makanin–Razborov
de Zlil Sela qui décrivent Hom(G, Γ) pour un groupe G de type fini et un groupe hyperbolique Γ. De
plus, nous traitons le cas où Γ est un groupe ayant de la torsion.

1. Introduction

The question whether one can decide if a system of equations (with constants) in a
free group has a solution was answered affirmatively by Makanin [31] who described
an algorithm that produces such a solution if it exists and says No otherwise. In his
groundbreaking work he introduced a rewriting process for systems of equations in the
free semigroup. This process was later refined by Razborov to give a complete description
of the set of solutions for a system of equations in a free group [32, 33]. This description
is now referred to as Makanin–Razborov diagrams.

Rips recognized that the Makanin process can be adapted to study group actions on
real trees which gave rise to what is now called the Rips machine, a structure theorem for
finitely presented groups acting on real trees similar to Bass–Serre theory for groups acting
on simplicial trees, see [5, 17, 21]. This has been generalized to finitely generated groups
by Sela [38] and further refined by Guirardel [22]. Recently Dahmani and Guirardel [11]
have in turn used the geometric ideas underlying the Rips theory to provide an alternative
version of Makanin’s algorithm.

Razborov’s original description of the solution set has been refined independently
by Kharlampovich and Myasnikov [26, 27] and Sela [40]; this description has been an
important tool in their solutions to the Tarski problems regarding the elementary theory
of free groups. Kharlampovich and Myasnikov modified Razborov’s methods to obtain

Keywords: Makanin–Razborov Diagrams.
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their own version of the rewriting process while Sela used the Rips machine extensively,
bypassing much of the combinatorics of the process.

While it seems that the full potential of the ideas underlying the Makanin process has
not yet been realized there are a number of generalizations of the above results. Sela [41]
has shown the existence of Makanin–Razborov diagrams for torsion-free hyperbolic
groups, which was then generalized to torsion-free relatively hyperbolic groups with
finitely generated Abelian parabolic subgroups by Groves [19]. Makanin–Razborov
diagrams for free products have been constructed independently by Jaligot and Sela
following Sela’s geometric approach and by Casals-Ruiz and Kazachkov [10] following
the combinatorial appoach of Kharlampovich and Myasnikov. Casals-Ruiz and Kazachkov
also constructed Makanin–Razborov diagrams for graph groups [10].

It is the purpose of this article to give a detailed account of Sela’s construction of
Makanin–Razborov diagrams for hyperbolic groups while also removing the torsion-
freeness assumption. It should be noted that Dahmani and Guirardel’s version of the
Makanin algorithm also applies to hyperbolic groups with torsion.

We are only dealing with equations without constants, no new ideas are needed to
deal with them. Thus we are interested in finding all tuples (x1, . . . , xn) ∈ Γn that satisfy
equations

wi(x1, . . . , xn) = 1
for i ∈ I where wi is some word in the x±1

j and Γ is a hyperbolic group. It is clear that
these solutions are in 1-to-1 correspondence to homomorphisms from

G = 〈x1, . . . , xn | wi(x1, . . . , xn), i ∈ I〉

to Γ. Thus paramatrizing the set of solutions to the above system of equations is equivalent
to parametrizing Hom(G, Γ).

Theorem 1.1. Let Γ be a hyperbolic group and G be a finitely generated group. Then
there exists a finite directed rooted tree T with root v0 satisfying

(1) The vertex v0 is labeled by G.

(2) Any vertex v ∈ VT , v , v0, is labeled by a group Gv that is fully residually Γ.

(3) Any edge e ∈ ET is labeled by an epimorphism πe : Gα(e) → Gω(e)

such that for any homomorphism φ : G→ Γ there exists a directed path e1, . . . , ek from
v0 to some vertex ω(ek) such that

φ = ψ ◦ πek ◦ αk−1 ◦ · · · ◦ α1 ◦ πe1

where αi ∈ Aut Gω(ei ) for 1 ≤ i ≤ k and ψ : Gω(ek ) → Γ is locally injective.
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Here a homomorphism is called locally injective if it is injective when restricted
to 1-ended and finite subgroups, thus it is injective on the vertex groups of any Dun-
woody/Linnell decompositon.

The proof broadly follows Sela’s proof in the torsion-free case but is also partly inspired
by Bestvina and Feighn’s exposition of Sela’s construction in the case of free groups [6]
and by Groves’s adaption of Sela’s work to the relatively hyperbolic case. We further rely
on Guirardel’s version of the Rips machine.

When following Sela’s strategy to prove Theorem 1.1 it is almost unavoidable to also
prove the following results that are all proven in Section 7 and follow from the same
stream of ideas. All results are due to Sela in the torsion-free case. Theorem 1 reconciles
two related notions of Γ-limit groups in the case of hyperbolic Γ, see Section 2.1 for
definitions.

Corollay 7.6. Let Γ be a hyperbolic group. Then finitely generated Γ-limit groups are
fully residually Γ.

Recall that a groupG is calledHopfian if every epimorphismG→ G is an isomorphism.

Corollary 7.9. Hyperbolic groups are Hopfian.

A group G is called equationally Noetherian if for every system of equations in G
there exists a finite subsystem that has the same set of solutions.

Corollary 7.13. Hyperbolic groups are equationally Noetherian.

In Section 2 we introduce Γ-limit groups, these are the groups that occur as vertex
groups in the Makanin–Razborov diagram. Moreover, we illustrate how Γ-limit groups
admit actions on real trees if Γ is a hyperbolic group and study the stability properties
of these actions. In Section 3 and Section 4 we discuss the Rips machine and the JSJ-
decomposition of Γ-limit groups before we give a detailed discussion of the shortening
argument in Section 5. The shortening argument in particular implies that the Makanin–
Razborov diagrams are locally finite. In Section 6 we then construct Makanin–Razborov
diagrams for hyperbolic groups under the additional assumption that Γ is equationally
Noetherian. In Section 7 we then discuss Sela’s shortening quotients and prove that
all hyperbolic groups are in fact equationally Noetherian, i.e. that the construction in
Section 6 applies to all hyperbolic groups. The authors would like to thank Abderezak
Ould Houcine for pointing out the content of Lemma 2.22(3) and Lemma 6.1.

A first version of this paper circulated in 2010. We do not discuss the numerous more
recent developments in the field.
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2. Γ-limit groups and their actions on real trees

In this chapter we introduce the concept of a Γ-limit group. While we will later on
solely be interested in the case where Γ is hyperbolic, the notion of a Γ-limit group
can be formulated for any group Γ. In the hyperbolic case, a Γ-limit group naturally
admits actions on metric R-trees, which arise as limits of group actions on the Cayley
graph of Γ (w.r.t. a fixed finite generating set). These Γ-limit groups will occur in the
Makanin–Razborov diagrams. In Section 2.2 we show in detail how these limit actions
arise, and in Section 2.3 we prove important stability properties of these actions. We will
then study the structure of virtually Abelian subgroups of Γ-limit groups. Most of the
material is standard except that we have to deal with torsion.

2.1. Γ-limit groups

Throughout this section Γ is an arbitrary group. We will discuss sequences of homomor-
phisms from a given (f.g.) group G to Γ. We denote by Hom(G, Γ) the set of all such
homomorphisms. Moreover, if (ϕi)i∈N is a sequence of homomorphisms from G to Γ, we
simply write (ϕi) ⊂ Hom(G, Γ).

With these notations we give a definition of a Γ-limit group which is analogous to the
definition of Bestvina and Feighn [6] in the case where Γ is free.

Definition 2.1. Let G be a group and (ϕi) ⊂ Hom(G, Γ). The sequence (ϕi) is stable if
for any g ∈ G either ϕi(g) = 1 for almost all i or ϕi(g) , 1 for almost all i. If (ϕi) is stable
then the stable kernel of the sequence, denoted by ker

−→
(ϕi), is defined as

ker
−→
(ϕi) := {g ∈ G | ϕi(g) = 1 for almost all i}.

We then call the quotient G/ker
−→
(ϕi) the Γ-limit group associated to (ϕi) and the

projection ϕ : G→ G/ker
−→
(ϕi) the Γ-limit map associated to (ϕi).

We call a quotient map ϕ : G→ G/N a Γ-limit map if it is the Γ-limit map associated
to some stable sequence (ϕi) ⊂ Hom(G, Γ). We will denote the Γ-limit group G/N by Lϕ .

We further call the sequence (ϕi) stably injective if (ϕi) is stable and ker
−→
(ϕi) = 1.

Remark 2.2. Note that any subgroup H of a Γ-limit group L = Lϕ is a Γ-limit group.
This can be seen by considering the stable sequence (ϕi |ϕ−1(H)) ⊂ Hom(ϕ−1(H), Γ) with
associated Γ-limit group H.

Cleary Γ and every subgroup of Γ are Γ-limit groups.

It turns out that Γ-limit groups are closely related to fully residually Γ groups: A
group G is called residually Γ if for every non-trivial element g ∈ G there exists a
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homomorphism ϕ : G → Γ s.th. ϕ(g) , 1. Further, G is called fully residually Γ if for
any finite set S ⊂ G there exists a homomorphism ϕ : G→ Γ such that ϕ|S is injective.
Note that any subgroup of Γ is fully residually Γ. We can immediately verify that in the
case of countable groups, every fully residually Γ group is a Γ-limit group:

Lemma 2.3. If G is countable and fully residually Γ, then G is a Γ-limit group.

Proof. Choose a surjective map f : N → G. For each i ∈ N let Mi := { f ( j) | j ≤ i}
and choose ϕi : G → Γ such that ϕi |Mi is injective. Clearly the sequence (ϕi) is stably
injective. Thus G = G/ker

−→
(ϕi) is a Γ-limit group. �

It turns out that in many situations, in particular in the case where Γ is hyperbolic,
a partial converse is true as well, namely f.g. Γ-limit groups are fully residually Γ, see
Corollary 7.6 below. This is more generally true whenever Γ is equationally Noetherian,
which we will prove in Section 6.1.

From now on we will almost exclusively consider finitely generated groups.

2.2. Limit actions on real trees

Throughout this section G is a finitely generated group endowed with a finite generating
set SG . Call a pseudo-metric d on G (left) G-invariant if

d(g, h) = d(kg, kh) for all g, h, k ∈ G.

We consider A(G), the space of all G-invariant pseudo-metrics on G, with the compact-
open topology. Thus a sequence (di) of G-invariant pseudo-metrics on G converges in
A(G) iff the sequence (di(1, g)) converges in R for all g ∈ G.

Lemma 2.4. Let (di) ⊂ A(G) be a sequence of G-invariant pseudo-metrics. If there
exists λ ∈ R such that for each i ∈ N and s ∈ SG , di(1, s) ≤ λ, then (di) has a subsequence
which converges in A(G).

Proof. For k ∈ N, let Bk := {g ∈ G | dSG (1, g) ≤ k} (where dSG denotes the word metric
on G w.r.t. SG). If λ is as above, it follows that for all k ∈ N and g ∈ Bk ,

di(1, g) ≤ kλ.

As Bk is finite, the compactness of the cube [0, kλ] |Bk | then implies that there is a
subsequence (di j,k )j∈N ⊂ (di) such that for all g ∈ Bk , the sequence(

di j,k (1, g)
)
j∈N
⊂ R

converges. Moreover, each sequence (di j,k )j∈N may be chosen as a subsequence of
(di j,k−1 )j∈N. It is nowobvious that the diagonal sequence

(
dik,k

)
k∈N

converges inA(G). �
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Remark 2.5. Note that the condition that di(1, s) ≤ λ for all s ∈ S and i ∈ N is essential,
i.e. in general, sequences of pseudo-metrics do not have convergent subsequences. In
the literature this is often bypassed by projectivizing the space A(G) and thereby
compactifying it. We will not adopt this point of view.

In the following we study sequences of pseudo-metrics on a group G that are induced
by actions on based hyperbolic G-spaces.

Throughout this article we use the following definition of δ-hyperbolicity: A pseudo-
metric space (X, d) (resp. a pseudo-metric d) is called δ-hyperbolic for δ ≥ 0 if for any
x, y, z, t ∈ X ,

(x |y)t ≥ min ((x |z)t, (y |z)t ) −
δ

3
, (2.1)

where (x |y)t is the Gromov product of x and y with respect to t given by

(x |y)t :=
1
2
(d(x, t) + d(y, t) − d(x, y)) . (2.2)

Note that the constant being δ
3 rather than δ is slightly non-standard. For a geodesic metric

space this choice of constant implies the δ-thinness of geodesic triangles, i.e. that for any
geodesic triangle [x, y] ∪ [y, z] ∪ [z, x] we have

[x, y] ⊂ Nδ([y, z] ∪ [z, x]),

see [1]. The definition via the Gromov product has the advantage that it also applies to
pseudo-metric spaces that are not geodesic.

In the following we study group actions. An action of a group G on a metric space X
is a homomorphism

ρ : G→ Isom(X)
from G to the isometry group of X . A (based) G-space is a tuple (X, x0, ρ) consisting of
a metric space X , a base point x0 ∈ X and an action ρ of G on X . If g ∈ G and x ∈ X ,
for convenience we will denote the element ρ(g)(x) ∈ X simply by gx if the action ρ is
understood. Moreover, when we want to explicitly state the action, we use the notation
ρgx := ρ(g)(x) to improve readability.

We will study pseudo-metrics that are induced by actions on metric spaces. Let
X = (X, x, ρ) be a based G-space. Then the G-action ρ on X induces a pseudo-metric

dx
ρ : G × G→ R≥0

on G, given by
dx
ρ (g, h) = dX (ρgx, ρhx).

Note that this pseudo-metric is G-invariant, and that dx
ρ is δ-hyperbolic if dX is δ-

hyperbolic. We will denote dx
ρ simply by dρ if the basepoint is clear from the context.

124



M.-R. diagrams for hyperbolic groups

Lemma 2.6. For i ∈ N, let δi ≥ 0 and Xi = (Xi, xi, ρi) a based δi-hyperbolic G-space.
Assume that the sequence

(
dxi
ρi

)
converges in A(G) to a limit sequence d∞ and

lim
i→∞

δi = 0.

Then there exists a based real G-tree (T, x, ρ) such thatT is spanned by ρGx, and dx
ρ = d∞.

ρi
g3xi

ρi
g1xi

ρi
g2xi

ρj
g4xj

ρj
g1xj

ρj
g2xj

ρj
g3xj

ρi
g4xi

η(g3)

η(g2)

η(g1)

η(g4)

Figure 2.1. A quadrilateral degenerating to a tree

Proof. As limi→∞ δi = 0, it follows that d∞ is 0-hyperbolic. We obtain a G-action on
the 0-hyperbolic metric space (Ĝ, d̂∞) obtained from the pseudo-metric space (G, d∞)
by metric identification, i.e. by identifying points of distance 0. Then there exists a real
G-tree T satisfying

• T admints a G-equivariant isometric embedding η : Ĝ→ T ,

• η(Ĝ) spans T , i.e. no proper subtree of T contains η(Ĝ).

We sketch the way T is constructed, for details we refer to Lemma 2.13 of [3]: Start with
the metric space (Ĝ, d̂∞) and for any x, y ∈ Ĝ, add a segment of length d̂∞(x, y) between
x and y. Finally, identify the initial segments of [x, y] and [x, z] of length (y |z)x for any
x, y, z ∈ Ĝ. By construction, the induced pseudo-metric dx

ρ of the G-action on T with
basepoint x := η(1) is equal to d∞. �

Later, we will need to scale the pseudo-metrics induced by sequences of actions of
δ-hyperbolic G-spaces to ensure the existence of a converging subsequence. The scaling
factor is the norm of the action as defined below. Note that the definition depends on the
choice of the generating set SG .
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Definition 2.7. Let X = (X, x, ρ) a based G-space. The norm of the action ρ with respect
to the base point x (and the fixed generating set SG), denoted by |ρ|x , is defined as

|ρ|x :=
∑
s∈SG

dX (x, ρsx).

We may simply write |ρ| if the basepoint x is clear from the context. Using this
definition, we obtain the following corollary as a consequence of Lemma 2.6.

Corollary 2.8. Let δ ≥ 0 and for i ∈ N, let Xi = (Xi, xi, ρi) be a based δ-hyperbolic
G-space such that

lim
i→∞
|ρi |xi = ∞.

Then there exists a based real G-tree (T, x, ρ) such that the induced sequence
( 1
|ρi |

dρi
)

of scaled pseudo-metrics on G has a subsequence converging in A(G) to dρ, and T is
spanned by ρGx.

Proof. For each s ∈ SG and i ∈ N, we have 1
|ρi |

dρi (xi, ρi sxi) ≤ 1
|ρi |
· |ρi | = 1. Hence

by Lemma 2.4, the sequence
( 1
|ρi |

dρi
)
has a convergent subsequence. Moreover, the

pseudo-metric 1
|ρi |

dρi is δ
|ρi |

-hyperbolic and

lim
i→∞

δ

|ρi |
= 0.

So the claim follows from Lemma 2.6. �

Note that the action ofG on the limit treeT may not beminimal. However, Theorem 2.11
below shows that theminimality of the action can be guaranteed if the basepoints are chosen
appropriately. Before we show this, we introduce the useful concept of approximating
sequences.

Definition 2.9. Let (Xi) = ((Xi, xi, ρi)) be a sequence of metric G-spaces. Assume
that the sequence (dρi ) converges to a pseudo-metric dρ induced by the based G-space
X = (X, x, ρ). For a point t ∈ X , an approximating sequence of t in (Xi) is a sequence (ti)
with ti ∈ Xi for each i such that

lim
i→∞

(
ρigxi

��
ρi hxi

)
ti
=

(
ρgx

��
ρhx

)
t (2.3)

for any g, h ∈ G.

It is easy to see that every point ρgx in the orbit of the basepoint x is approximated by the
sequence (ρigxi). In particular, the sequence (xi) of basepoints approximates x. However,
in general the limit space may contain points which do not admit an approximating
sequence. But the following lemma implies that this cannot occur under the hypothesis of
Lemma 2.6.
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Lemma 2.10. Let (Xi) = (Xi, xi, ρi) be a sequence of geodesic G-spaces, where each Xi

is δi-hyperbolic and
lim
i→∞

δi = 0.

Assume that (dρi ) converges to dρ where T = (T, x, ρ) is a G-tree spanned by ρGx. Then
the following hold.

(1) Every t ∈ T has an approximating sequence.

(2) If (ti) and (t̄i) are approximating sequences for some t ∈ T , then

lim
i→∞

dXi (ti, t̄i) = 0.

(3) If (ti) is an approximating sequence for t then (ρigti) is an approximating sequence
for ρgt.

(4) If (ti) and (yi) are approximating sequences for t and y then

lim
i→∞

dXi (ti, yi) = dT (t, y).

Proof. Let t ∈ T . AsT is spanned by ρGx there exist g1, g2 ∈ G such that t ∈ [ρg1x, ρg2x].
Fix such g1, g2. For each i choose ti ∈ [ρig1xi, ρig2xi] s.th.

dXi (ti, ρig1xi)

dXi (ρig1xi, ρig2xi)
=

dT (t, ρg1x)

dT (ρg1x, ρg2x)
.

This choice clearly implies that (2.3) holds for g ∈ {g1, g2}. Now consider an arbitrary
g ∈ G. To prove (1) we need to show that limi→∞ dXi (ti, ρigxi) = dT (t, ρgx).

Note that (ρg1x | ρg2x)t = 0 (cf. (2.2)). Since T is 0-hyperbolic, this implies w.l.o.g.
(possibly after exchanging g1 and g2) that (ρg2x |ρgx)t = 0 as in Figure 2.2. This implies
that (ρg2x | ρgx)t = 0.

ti

t′i

ρg1x ρg2x

ρgx

t

ρi
gxi

ρi
g2xiρi

g1xi

Figure 2.2. An approximating sequence (ti) of t.
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Now choose t ′i ∈ [ρig2xi, ρigxi] such that

dXi (ρig2xi, t ′i ) = dXi (ρig2xi, ti).

It is easily verified that limi→∞ dXi (ti, t
′
i ) = 0. This implies that

lim
i→∞

dXi (ti, ρigxi) = lim
i→∞

dXi (t
′
i , ρigxi)

= lim
i→∞
(dXi (ρig2xi, ρigxi) − dXi (t

′
i , ρig2xi))

= dT (ρg2x, ρgx) − dT (t, ρg2)

= dT (t, ρgx).

Thus (ti) is an approximating sequence of t and (1) is established.
To prove (2) note first that it suffices to deal with the case where (ti) is constructed as

in the proof of (1), in particular ti ∈ [ρig1xi, ρig2xi] for all i and some fixed g1, g2 ∈ G.
As (t̄i) is an approximating sequence for t it follows that

lim
i→∞

dXi (ρigk xi, t̄i) = lim
i→∞

dXi (ρigk xi, ti)

for k = 1, 2. As Xi is δi-hyperbolic with limi→∞ δi = 0 it follows easily that
limi→∞ dXi (t̄i, ti) = 0.

(3) is trivial and (4) follows from (2) and the fact that we can construct approximating
sequences for t and y as in the proof of (1) by choosing g1, g2 such that both t and y lie
on [ρg1x, ρg2x]. �

We conclude the section with the following theorem, it guarantees that a limit action is
minimal provided that base points are centrally located, meaning that the norm is smallest
for the chosen base points.

Theorem 2.11. Let (Xi, xi, ρi) for i ∈ N and (T, x, ρ) be as in Lemma 2.6. If for any i and
any y ∈ Xi ,

|ρi |y ≥ |ρi |xi , (2.4)

then the limit action of G on T is minimal.

Proof. The proof is by contradiction.
Assume that T ′ ⊂ T is a proper G-invariant subtree. Recall that T is spanned by the

orbit of the base point x. This implies that x < T ′ as otherwise the orbit ρGx and therefore
T would be contained in T ′. Let px be the nearest point projection of x to T ′.

It follows that for any g ∈ G we have ρgpx = px or [x, ρgx] = [x, px] ∪ [px, ρgpx] ∪

[ρgpx, ρgx]. It follows that

dT (x, ρgx) ≥ dT (px, ρgpx)
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for all g ∈ G. Moreover for some s ∈ SG we have ρsx , x as otherwise ρGx = x and
therefore T = {x} as T is spanned by ρGx. This implies in particular that for some s ∈ SG
we have dT (ρsx, x) > dT (ρspx, px), it follows that

|ρ|px =
∑
s∈SG

dT (px, ρspx) <
∑
s∈SG

dT (x, ρsx) = |ρ|x .

Let (pix) be an approximating sequence for px . Then,

lim
i→∞
|ρi |pi

x
= |ρ|px < |ρ|x = lim

i→∞
|ρi |xi .

Therefore, for large i, we get |ρi |pi
x
< |ρi |xi , contradicting the assumption on the xi . �

We conclude this section by explaining how the previous statements imply that most
Γ-limit groups act on real trees if Γ is a hyperbolic group.

Let Γ be a hyperbolic group with finite generating set SΓ and X := Cay(Γ, SΓ). As
before G is a group with finite generating set SG . Let δ be the hyperbolicity constant of X .
Recall that Γ is a subgroup of Isom(X) if we consider the natural left action of Γ on X .
Thus any ϕ ∈ Hom(G, Γ) defines an action of G on X , namely

ϕ : G→ Γ ⊂ Isom(X).

It follows that (X, 1, ϕ) is a based G-space for any ϕ ∈ Hom(G, Γ). This action induces
the δ-hyperbolic pseudo-metric dϕ := d1

ϕ on G given by

dϕ(g, h) = dX (ϕg · 1, ϕh · 1) = dX (ϕ(g), ϕ(h)) = |ϕ(g−1h)|SΓ .

We can now define the norm of φ, cf. Definition 2.7:

Definition 2.12. We call |ϕ| := |ϕ|1 =
∑

s∈SG dX (1, ϕ(s)) the norm of ϕ.

For any g ∈ Γ let cg : Γ→ Γ be the inner automorphism given by cg(h) := g−1hg for
all h ∈ Γ. It is now clear that dcg◦ϕ = dg

ϕ as

dcg◦ϕ(h, k) = dX (g−1ϕ(h)g, g−1ϕ(k)g) = dX (ϕ(h)g, ϕ(k)g) = dg
ϕ(h, k)

for all h, k ∈ G. It follows in particular that |cg ◦ ϕ| = |ϕ|g.
We call a homomorphism ϕ ∈ Hom(G, Γ) conjugacy-short if |ϕ| ≤ |ϕ|g for all g ∈ Γ.

We now consider a sequence of homomorphisms (ϕi) ⊂ Hom(G, Γ) such that the following
hold:

(1) ϕi is conjugacy-short for all i ∈ N.

(2) (ϕi) does not contain a subsequence (ϕji ) such that ker ϕji = ker ϕji′ for all
i, i′ ∈ N.
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The second condition implies that we may assume that the ϕi are pairwise distinct
after passing to a subsequence. It follows in particular that limi→∞ |ϕi | = ∞ as for any K
there are only finitely many homomorphisms of norm at most K .

Let now Xi = (Xi, dXi ) be the metric space obtained from X by scaling with the factor
1
|ϕi |

, thus Xi = X (the underlying sets) and dXi =
1
|ϕi |

dX . Clearly G also acts on Xi by
isometries where the action on the underlying sets X = Xi coincide, hence we obtain a
based G-space (Xi, 1, ρi) where ρi : G→ Isom(Xi) is given by

ρigx = ϕi(g)x for all x ∈ Xi = X .

It is immediate that dρi =
1
|ϕi |

dϕi . Moreover dρi is δi-hyperbolic with δi := δ
|ϕi |

and
limi→∞ δi = 0.

The following theorem is a consequence of Theorem 2.6 and the above discussion.
Here we call a G-space non-trivial if it does not have a global fixed point.

Theorem 2.13. Let (ϕi) ⊂ Hom(G, Γ) be a sequence of conjugacy-short homomorphisms.
Then one of the following holds.

(1) (ϕi) contains a constant subsequence.

(2) A subsequence of ( 1
|ϕi |

dϕi ) converges to dx
ρ for some non-trivial, minimal real

based G-tree (T, x, ρ).

Proof. It follows from Lemma 2.4 that (dρi ) = ( 1
|ϕi |

dϕi ) has a convergent subsequence as(
1
|ϕi |

dϕi

)
(1, ϕi(s′)) =

dϕi (1, ϕi(s′))∑
s∈SG dϕi (1, ϕi(s))

≤ 1

for all s′ ∈ SG . Assume that (ϕi) does not contain a constant subsequence. Then dρi
is δi-hyperbolic with lim δi = 0, and it follows from Lemma 2.6 that the limit metric
concides with dρ for some real based G-tree (T, x, ρ). As |ϕi | ≤ |ϕi |g for all i ∈ N and
g ∈ Γ it further follows from Theorem 2.11 that this action is minimal. Thus we need to
argue that T has more than one point. This however follows from the fact that∑

s∈SG

dT (x, ρsx) = lim
i→∞

∑
s∈SG

1
|ϕi |

dϕi (1, s) = lim
i→∞

1
|ϕi |

∑
s∈SG

dϕi (1, s) = 1. �

Remark 2.14. Let (ϕi) and (T, x, ρ) be as in the conclusion of Theorem 2.13(2). By
Lemma 2.10 any t ∈ T admits an approximating sequence, i.e. a sequence (ti) with
ti ∈ Xi = X such that for all g ∈ G we have

lim
i→∞

dXi (ϕi(g), ti) = lim
i→∞

1
|ϕi |

dX (ϕi(g), ti) = dT (ρgx, t).

130



M.-R. diagrams for hyperbolic groups

As limi→∞ |ϕi | = ∞ this clearly implies that for each i ∈ N, ti may be chosen to be a
vertex in X .

We conclude this section with an important example that shows how distinct sequences
of homomorphisms in Hom(Z2,Z) give rise to distinct actions on real trees. We consider
G = Z2 with the generating set SG = {(1, 0), (0, 1)} and Γ = Z with the generating set
SΓ = {1}.

(1) Consider (ϕi) ⊂ Hom(Z2,Z) where ϕi((1, 0)) = 1 and ϕi((0, 1)) = i. Then
|ϕi | = i + 1 and therefore

lim
i→∞

1
|ϕi |

dϕi (0, (x, y)) = lim
i→∞

x + iy
i + 1

= y.

Thus ( 1
|ϕi |

dϕi ) converges to d0
ρ for the real Z2-tree (R, 0, ρ) with ρ(1, 0)r = r and

ρ(0, 1)r = r + 1 for all r ∈ R. It follows in particular that the subgroup 〈(1, 0)〉
acts trivially on R.

(2) Let λ1, λ2 ∈ R with λ1 + λ2 = 1 be linearly independent over Q and choose
sequences (ai) and (bi) of integers such that

lim
i→∞

ai
ai + bi

= λ1 (and therefore lim
i→∞

bi
ai + bi

= λ2).

Consider (ϕ′i) ⊂ Hom(Z2,Z) where ϕ′i((1, 0)) = ai and ϕ′i((0, 1)) = bi . Clearly
|ϕ′i | = ai + bi and therefore

lim
i→∞

1
|ϕ′i |

dϕ′i (0, (x, y)) = lim
i→∞

xai + ybi
ai + bi

= xλ1 + yλ2.

Thus ( 1
|ϕi |

dϕi ) converges to d0
ρ for the real Z2-tree (R, 0, ρ′) with ρ′((1, 0))r =

λ1 + r and ρ′((0, 1))r = λ2 + r for all r ∈ R. It follows in particular that any
non-trivial element of Z2 act non-trivially on R.

2.3. Stability of limit actions of limit groups

Throughout this section let G be a f.g. group and Γ be an infinite hyperbolic group, both
equipped with word metrics relative to fixed finite generating sets SG and SΓ respectively.

Call a sequence (ϕi) ⊂ Hom(G, Γ) convergent if the sequence
( dϕi
|ϕi |

)
converges in

A(G). Now let (ϕi) be a convergent sequence and assume that (ϕi) does not contain a
constant subsequence. Then we obtain a G-tree (T, x, ρ) as in Corollary 2.8. We will
simply say that the sequence (ϕi) converges to the limit G-tree T .

Moreover, if (ϕi) is stable with Γ-limit map ϕ, then the action ρ factors through ϕ, i.e.
we obtain an action ρ∞ : Lϕ → Isom(T) s.th. ρ = ρ∞ ◦ ϕ. We call the space (T, x, ρ∞)
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the limit Lϕ-tree of the sequence (ϕi), resp. (T, x, ρ) the limit G-tree. (We may simply
speak of the limit tree, or limit action, of (ϕi) if it is clear from the context whether we
refer to the G-action or the Lϕ-action.)

Now consider an arbitrary stable sequence (ϕi) ⊂ Hom(G, Γ) with associated Γ-limit
map ϕ. We may assume that ϕi is conjugacy-short for all i ∈ N as replacing ϕi with cg ◦ϕi
for some g ∈ Γ does not change the kernel and therefore preserves the stability of (ϕi).

If (ϕi) contains a constant subsequence, i.e. contains a homomorphism ϕ′ infinitely
many times, then the stability of (ϕi) implies that ker ϕ′ = ker

−→
(ϕi). It then follows that

Lϕ = Im(ϕ) � Im(ϕ′) ≤ Γ

is isomorphic to a subgroup of Γ.
If such a sequence does not exist, then Theorem 2.13 implies that (ϕi) has a subsequence

(ϕji ) such that the sequence of pseudo-metrics ( 1
|ϕ ji
|
dϕ ji
) converges to a pseudo-metric

dx
ρ for some minimal non-trivial G-tree (T, x, ρ). Thus, (ϕji ) is a converging subsequence.

We will call a sequence with the above properties strict:

Definition 2.15. A stable sequence (ϕi) ⊂ Hom(G, Γ) is called strict if the following are
satisfied.

(1) ϕi is conjugacy-short for all i ∈ N.

(2) (ϕi) does not have a constant subsequence.

Thus the above discussion implies that any strict sequence has a subsequence that
converges to a limit G-tree T .

Remark. Note that the limit action does depend on the choice of the subsequence. Indeed,
consider the sequences (ϕi) ⊂ Hom(Z2,Z) and (ϕ′i) ⊂ Hom(Z2,Z) discussed at the end
of the previous section. Clearly both sequences are stable and

ker
−→
(ϕi) = ker

−→
(ϕ′i) = 1.

Let now (ϕ̄i) ⊂ Hom(Z2,Z) be the sequence with ϕ̄2i = ϕi and ϕ̄2i+1 = ϕ
′
i for all i ∈ N.

Again (ϕ̄i) is stable with ker
−→
(ϕ̄i) = 1. While (ϕ̄) is not convergent the two subsequences

(ϕi) and (ϕ′i) are. However they converge to distinct actions of Z
2 on R.

Definition 2.16 ([5]). Let T be a G-tree. A non-degenerate subtree S ⊂ T is called stable
if for every non-degenerate subtree S′ ⊂ S, stabG(S′) = stabG(S). Otherwise S is called
unstable. The tree T is stable if every non-degenerate subtree of T contains a stable
subtree.
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The following theorem is the main result of this section. Recall that a tripod is a tree
spanned by three points and a tripod is called non-degenerate if it is not spanned by two
points.

If P is a class of groups then we say that a group G is finite-by-P if G contains a finite
normal subgroup N such that G/N is in P.

Theorem 2.17. Let (ϕi) ⊂ Hom(G, Γ) be a convergent strict sequence with induced
Γ-limit map ϕ, and L = Lϕ . Let T be the limit L-tree. Then the following hold for the
action of L on T .

(1) The stabilizer of any non-degenerate tripod is finite.

(2) The stabilizer of any non-degenerate arc is finite-by-Abelian.

(3) Every subgroup of L which leaves a line in T invariant and fixes its ends is
finite-by-Abelian.

(4) The stabilizer of any unstable arc is finite.

Before we proceed with the proof of Theorem 2.17 we recall some useful facts about
torsion subgroups of hyperbolic groups.

Proposition 2.18. Let Γ be a hyperbolic group. Then the following hold.

(1) There exists a constant N = N(Γ) such that every torsion subgroup of Γ has at
most N elements.

(2) There exists a constant L = L(Γ) such that for every subgroup H ≤ Γ, one of the
following holds.

(a) H is a finite group (of order at most N(Γ)).
(b) For any generating set S of H there exists a hyperbolic element γ ∈ H such

that |γ |S ≤ L, where | · |S denotes the word length on H relative to S.

Proof. Note first that torsion subgroups of hyperbolic groups are finite, see e.g. [18,
Chapitre 8, Corollaire 36]. Thus (1) follows from the fact that for any hyperbolic group Γ
there exists N(Γ) such that any finite group is of order at most N(Γ), see [7, 8].

(2) is essentially due to M. Koubi [28]. Proposition 3.2 of [28] implies that there exists
a finite set S̄ ⊂ Γ such that any set S ⊂ Γ is either conjugate to a subset of S̄ or that
there exists a word w in S ∪ S−1 of length at most 2 such that w represents a hyperbolic
element of Γ. Now for each subset S of S̄ let L(S) = 0 if 〈S〉 is finite and let L(S) be
the length of a shortest word in S ∪ S−1 that represents a hyperbolic element otherwise.
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Because of (1) such an element always exists. The conclusion now follows by putting
L(Γ) := max(2,maxS⊂S̄(L(S))). �

It turns out that the existence of a uniform bound on the order of finite subgroups of a
hyperbolic group Γ ensures the same for Γ-limit groups.

Lemma 2.19. Let Γ be hyperbolic and L be a Γ-limit group. Then the following hold.

(1) Every torsion subgroup of L has at most N(Γ) elements.

(2) A subgroup A ≤ L is finite-by-Abelian iff all f.g. subgroups of A are finite-by-
Abelian.

Proof. Choose a stable sequence (ϕi) ⊂ Hom(G, Γ) with induced Γ-limit map ϕ : G→
L = Lϕ .

We prove (1) by contradiction. Thus assume there exists a torsion subgroup E ≤ L
that contains N(Γ)+ 1 pairwise distinct elements g0, . . . , gN (Γ). For each k = 0, . . . , N(Γ),
pick g̃k ∈ G s.th. ϕ(g̃k) = gk .

The stability of (ϕi) implies that ϕi(g̃m) , ϕi(g̃n) for large i and 0 ≤ n , m ≤ N(Γ).
Thus Proposition 2.18(1) implies that 〈ϕi(g̃0), . . . , ϕi(g̃N (Γ))〉 is infinite for large i.

Proposition 2.18(2) then implies that for large i there exists a word wi in g̃0, . . . , g̃N (Γ)

of length at most L(Γ) such that ϕi(wi) is of infinite order. Now there are only finitely
many such words. Thus there exists a word w such that w = wi for infinitely many i.
As E is assumed to be a torsion group it follows that ϕ(w)k = 1 for some k, i.e. that
wk ∈ ker

−→
(ϕi) and therefore wk ∈ ker ϕi for almost all i, a contradiction. Thus (1) is

proven.
We now show (2). Clearly, if A is finite-by-Abelian, so are all f.g. subgroups. Thus

we need to show that if the commutator subgroup of A is infinite, i.e. contains N(Γ) + 1
distinct elements g0, . . . , gN (Γ), then the same is true for some f.g. subgroup of A. This
however is obvious as any element of the commutator subgroup of some group is the
product of finitely many commutators and therefore lies in the commutator subgroup of a
finitely generated subgroup. �

Let now Γ be a hyperbolic group and X := Cay(Γ, SΓ) its Caleygraph. For any
hyperbolic element γ ∈ Γ we denote its fixed points in ∂X by pγ+ and pγ− and we denote
by Aγ the union of all geodesics connecting pγ+ and pγ−. We call Aγ the axis of γ. Aγ
is a γ-invariant subset of X that is contained in the 2δ-neighborhood of any geodesic
connecting pγ+ and pγ−.
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Lemma 2.20. Let Γ be a hyperbolic group and X := Cay(Γ, SΓ). Then there exists a
constant K such that for any hyperbolic element γ ∈ Γ and x ∈ X we have

dX (x, γx) ≥ 2dX (x, Aγ) − K .

Proof. If the translation length of γ is greater than 10δ then the definition of hyperbolicity
easily implies that this inequality holds for K = 0 as the path [x, px]∪[px, γpx]∪[γpx, γx]
is a (1, 4δ)-quasigeodesic joining x and γx. For any fixed hyperbolic element γ the existence
of such a constant K is also easily established. As there are only finitely many conjugacy
classes of elements with translation length at most 10δ this guarantees the existence of a
uniform K as above. �

The following proposition is the main step in the proof of Theorem 2.17(2) and (3).

Proposition 2.21. Let Γ be hyperbolic with finite generating set SΓ and X := Cay(Γ, SΓ).
Then there exist constants C, ε ∈ R>0 such that for any set Y ⊂ Γ the following holds.

If there exist x1, x2 ∈ X such that

(1) d(x1, x2) > C,

(2) d(xi, hxi) < ε · d(x1, x2) for all h ∈ Y and i ∈ {1, 2},

then 〈Y〉 is either finite or finite-by-Z.

Proof. Let K be the constant from Lemma 2.20. We may assume that K ≥ δ where δ is
the hyperbolicity constant of X .

Let M be the number of elements of Γ of word length at most 20δ. We will show that
the claim of the proposition holds for C := 1000 · K and ε := 1

1000(M ·L(Γ)+1) .
Let Y ⊂ Γ and assume that x1, x2 ∈ X satisfy the conditions of the proposition with

C, ε as above. If 〈Y〉 is finite there is nothing to show. Thus we may assume that 〈Y〉 is
infinite. By Proposition 2.18(2) there exists a word w0 of length at most L(Γ) in Y ∪ Y−1

that represents a hyperbolic element of Γ. As before we denote by pw0
+ and pw0

− the fixed
points of w0 in ∂X . We will show that any y ∈ Y also fixes pw0

+ and pw0
− .

The triangle inequality and the assumption of the proposition imply that for any
w ∈ 〈Y〉 we have

d(xi,wxi) ≤ |w |Y · ε · d(x1, x2) = |w |Y ·
d(x1, x2)

1000(M · L(Γ) + 1)
for i = 1, 2. It follows that for j ∈ {0, . . . , M}, y ∈ Y ∪ {1} and i ∈ {1, 2} we have

d(xi, (w
j
0y)xi) ≤ (M · L(Γ) + 1) ·

d(x1, x2)

1000(M · L(Γ) + 1)
=

d(x1, x2)

1000
.
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The case j = 1 and y = 1 gives

d(xi,w0xi) ≤
d(x1, x2)

1000
for i = 1, 2. It follows from Lemma 2.20 that

d(xi, Aw0 ) ≤
1
2
(d(xi,w0xi) + K) =

1
2

(
d(xi,w0xi) +

C
1000

)
≤

1
2

(
d(x1, x2)

1000
+

d(x1, x2)

1000

)
=

d(x1, x2)

1000

for i = 1, 2.

z

x1
x2

Aw0

wj
0yAw0

Figure 2.3. The midpoint z is moved by at most 20δ by w0 · (w
j
0y)w

−1
0 (w

j
0y)
−1

It follows that for i = 1, 2, j ∈ {0, . . . , M} und y ∈ Y ∪ {1} we have

d(xi,w
j
0yAw0 ) = d((w j

0y)
−1xi, Aw0 ) ≤ d((w j

0y)
−1xi, xi) + d(xi, Aw0 )

= d(xi,w
j
0yxi) + d(xi, Aw0 ) ≤

d(x1, x2)

1000
+

d(x1, x2)

1000
=

d(x1, x2)

500
,

thus xi is contained in the d(x1,x2)
500 -neighborhoods of both Aw0 andw

j
0 yAw0=A

(w
j
0 y)w0(w

j
0 y)
−1 .

Let now z ∈ V X = Γ be the midpoint of a geodesic segment [x1, x2] between x1 and
x2. The 2δ-thinness of geodesic triangles imply that the 2δ-neighborhoods of both Aw0

and w
j
0yAw0 contain the geodesic segment [y1, y2] ⊂ [x1, x2] that is centered at z and of

length 99
100 d(x1, x2). It now follows easily that

d(z,w0 · (w
j
0y)w

−1
0 (w

j
0y)
−1 · z) ≤ 20δ.

As there are M points in the 20δ-neighborhood of z it follows that there are j1 < j2 ∈
{0, . . . , M} such that

w0(w
j1
0 y)w−1

0 (w
j1
0 y)−1 · z = w0(w

j2
0 y)w−1

0 (w
j2
0 y)−1 · z

and therefore
w0(w

j1
0 y)w−1

0 (w
j1
0 y)−1 = w0(w

j2
0 y)w−1

0 (w
j2
0 y)−1.
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After conjugation with w
j1
0 we get

[w0, y] = w0yw
−1
0 y−1 = w0w

j0
0 yw−1

0 y−1w
−j0
0 = w

j0
0 [w0, y]w

j0
0

for j0 = j2 − j1 ∈ {1, . . . , M}. As [w0, y] commutes with w
j0
0 it follows that [w0, y]

preserves the fixed points of w j0
0 , i.e. preserves pw0

+ and pw0
− . As [w0, y] = w0 · yw0y

−1

and as w0 preserves pw0
+ and pw0

− it follows that yw0y
−1 also preserves pw0

+ and pw0
− , thus

y preserves {pw0
+ , pw0

− } as a set. It now easily follows from assumption (2) that y in fact
preserves pw0

+ and pw0
− pointwise. This implies that 〈Y〉 preserves pw0

+ and pw0
− . Thus 〈Y〉 is

a 2-ended group that acts end-preservingly on itself, thus 〈Y〉 is finite-by-Z by Lemma 4.1
of [43]. �

We can now prove Theorem 2.17.

Proof of Theorem 2.17. We first prove (1). Let D be a non-degenerate tripod spanned by
x, y, z ∈ T . By Lemma 2.19 it suffices to show that H := stabL(D) is a torsion group. Let
h ∈ H and pick h̃ ∈ G such that ϕ(h̃) = h. We need to show that ϕi(h̃) is of finite order
for large i as this implies that h̃N (Γ)! ∈ ker

−→
(ϕi) which implies that h is a torsion element.

We follow the argument from the proof of Lemma 4.1 in [35].We argue by contradiction,
thus after passing to a subsequence we may assume that ϕi(h̃) is hyperbolic for all i ∈ N.

Let (xi), (yi) and (zi) be approximating sequences of x, y and z. By Remark 2.14 we
may assume that the xi , yi and zi are vertices of X , i.e. elements of Γ. By Lemma 2.20
there exists a constant K such that

dX (xi, Aϕi (h̃)
) ≤

1
2
(dX (xi, ϕi(h̃)xi) + K)

for all i ∈ N and therefore

lim
i→∞

1
|ϕi |

dX (xi, Aϕi (h̃)
) ≤ lim

i→∞

1
2|ϕi |

(d(xi, ϕi(h̃)xi) + K)

=
1
2

dT (x, ϕ(h̃)x) =
1
2

dT (x, hx) = 0.

It follows that dT (x, Ah) = limi→∞
1
|ϕi |

dX (xi, Aϕi (h̃)
) = 0, i.e. x lies on Ah. The same

argument shows that y and z lie on Ah contradicting the assumption that x, y and z span a
non-degenerate tripod as Ah is a line.

To prove (2), assume that H ≤ G stabilizes a non-degenerate arc [x, y] ⊂ T . Let (xi)
and (yi) be approximating sequences of x, respectively y. Clearly limi→∞ dX (xi, yi) = ∞
and

lim
i→∞

dX (xi, ϕi(h)xi)
dX (xi, yi)

= lim
i→∞

dX (yi, ϕi(h)yi)
dX (xi, yi)

= 0
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Aϕi(h)
xi

yi

zi

Figure 2.4. Tripod stabilizers are finite

for any h ∈ H. Let now U be a f.g. subgroup of H and let S̃ be a finite generating set
of U. The above discussion implies that the hypothesis of Proposition 2.21 is satisfied
for S := ϕi(S̃) and i sufficiently large. Thus ϕi(U) = 〈S〉 is finite-by-Abelian, i.e.
ϕi([U,U]) = [ϕi(U), ϕi(U)] is of order at most N(Γ) for i sufficiently large.

The stability of the sequence (ϕi) now implies that ϕ([U,U]) is a torsion group and
therefore finite by Lemma 2.19(1), in particular ϕ(U) ≤ L is finite-by-Abelian. Thus
ϕ(H) is finite-by-Abelian by Lemma 2.19(2).

The proof of (3) is similar to that of (2). Assume that H ≤ G acts orientation-
preservingly on a line Y ⊂ T with ends x and y. Choose sequences (xk)k∈N and (yk)k∈N
of points on Y that converge to x, respectively y.

Clearly limk→∞ dT (xk, yk) = ∞ and therefore

lim
k→∞

dT (xk, ϕ(h)xk)
dT (xk, yk)

= 0 = lim
k→∞

dT (yk, ϕ(h)yk)
dT (xk, yk)

for all h ∈ H as dT (xk, ϕ(h)xk) = dT (yk, ϕ(h)yk) is just the translation length of ϕ(h)
and therefore independent of k.

For each k choose approximating sequences (xki )i∈N of xk and (yki )i∈N of yk . Now fix
h ∈ H and k ∈ N. It follows from the definition of approximating sequences that

lim
i→∞

d(xki , ϕi(h)x
k
i )

d(xki , y
k
i )

=
dT (xk, ϕ(h)xk)

dT (xk, yk)

and

lim
i→∞

d(yki , ϕi(h)y
k
i )

d(xki , y
k
i )

=
dT (yk, ϕ(h)yk)

dT (xk, yk)
.
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As the right hand sides of these equations tend to 0 as k tends to ∞ if follows that for
some subsequence (ϕmi ) of (ϕi) we get

lim
i→∞

d(ximi
, ϕmi (h)x

i
mi
)

d(ximi
, yimi
)

= 0 = lim
i→∞

d(yimi
, ϕmi (h)y

i
mi
)

d(ximi
, yimi
)

.

As H is countable a diagonal argument shows that we can assume that this holds for all
h ∈ H after passing to a subsequence. Thus we can argue as in the proof of (2).

To prove (4), let [y1, y2] ( [y3, y4] and

γ ∈ stabL([y1, y2]) \ stabL([y3, y4]).

As γ does not fix both y3 and y4, we may assume γ(y3) , y3.

y1 y2 y4

γ(y3)

y3

Figure 2.5. Unstable arcs have finite stabilizers

Note that for each γ̄ ∈ stabL([y3, y4]) we have

γ̄(γ(y3)) = [γ̄, γ](γ(γ̄(y3))) = [γ̄, γ](γ(y3)).

As the commutator subgroup of stabL([y1, y2]) is finite by (2) it follows that {[γ̄, γ]|γ̄ ∈
stabL([y3, y4])} and therefore the stabL([y3, y4])-orbit of γ(y3) is finite. It follows that a
finite index subgroupU of stabL([y3, y4]) fixes γ(y3) and therefore also the tripod spanned
by y3, y2 and γ(y3). By (1) the subgroup U is finite. Thus stabL([y3, y4]) is finite. �

2.4. Virtually Abelian subgroups of Γ-limit groups

Call a group almost Abelian if it contains a finite-by-Abelian subgroup of finite index. It
is trivial that any virtually Abelian group is almost Abelian and the converse holds for
finitely generated groups, see Theorem 8.40 of [9].

While we will later see that almost Abelian subgroups of finitely generated Γ-limit
groups (with Γ hyperbolic) are finitely generated and therefore virtually Abelian, this is
can also be verified directly exploiting the ideas from the previous section.

Note that subgroups of almost Abelian groups are almost Abelian and that almost
Abelian subgroups of hyperbolic groups are 2-ended. Throughout this section Γ is a
hyperbolic group. We study not necessarily finitely generated almost Abelian Γ-limit
groups.
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Lemma 2.22. Let A be an infinite Γ-limit group. Then the following hold.

(1) If A is almost Abelian, it is either finite-by-Abelian or contains a unique finite-by-
Abelian subgroup A+ of index 2.

(2) If A is finite-by-Abelian with center Z(A) then |A : Z(A)| < ∞.

(3) A is virtually Abelian iff A is almost Abelian.

(4) A is virtually Abelian iff all f.g. subgroups of A are virtually Abelian.

Proof. Assume that A = 〈a0, a1, . . .〉. As A is infinite it contains an element of infinite
order by Proposition 2.18, thus we may assume that a0 is of infinite order. Choose a stable
sequence (ϕi) ⊂ Hom(G, Γ) with induced Γ-limit map ϕ : G→ A = Lϕ . For each i pick a
lift ãi ∈ G such that ϕ(ãi) = ai . For k ∈ N put Ak = 〈a0, . . . , ak〉 and Ãk := 〈ã0, . . . , ãk〉,
clearly A =

⋃
k∈N Ak . Note that all Ak and Ãk are infinite as a0 and therefore also ã0 is of

infinite order.

(1). Let A be almost Abelian. Note first that all Ak are finitely generated and almost
Abelian and therefore finitely presented. Choose relators r1, . . . , rmk

∈ F(a0, . . . , ak) such
that

Ak = 〈a0, . . . , ak | r1, . . . , rmk
〉.

Let r̃ l be the word obtained from rl by replacing occurences of a±1
j by ã±1

j .
As ϕ(̃r l) = 1 for all l it follows that r̃ l ∈ ker

−→
(ϕi) and therefore ϕi (̃r l) = 1 for all l and

large i. This implies that there exists mk such that Ak,i := ϕi(Ãk) is a quotient of Ak for
i ≥ mk and therefore almost Abelian. We may further assume that for i ≥ mk ϕi(ã0) is of
infinite order. For i ≥ mk the group Ak,i is therefore an infinite almost Abelian subgroup
of some hyperbolic group and hence 2-ended.

For i ≥ mk let A+
k,i

be the subgroup of Ak,i consisting of all elements that preserve
the ends of Ak,i . Clearly, |Ak,i : A+

k,i
| ≤ 2. Moreover put Ã+

k,i
:= ϕ−1

i (A
+
k,i
) ∩ Ãk , again it

follows that | Ãk : Ã+
k,i
| ≤ 2.

As Ãk is finitely generated it contains only finitely many subgroups of index 2. A
diagonal argument therefore shows that after passing to a subsequence we can assume
that for each k there exists a subgroup Ã+

k
≤ Ãk and nk ≥ mk ∈ N such that Ã+

k
= Ã+

k,i

for all i ≥ nk . As the images ϕi(Ã+k ) act orientation preservingly on an axis of Γ for
i ≥ nk it follows from Proposition 2.21 that A+

k,i
:= ϕi(Ã+k ) is finite-by-Z for i ≥ nk . Let

A+
k
= ϕ(Ã+

k
). It follows as in the proof of Theorem 2.17(2) that [A+

k
, A+

k
] is finite, i.e. that

also A+
k
is finite-by-Abelian.
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Clearly, A+
k
is of index at most 2 in Ak . It is further easily verified that A+

k
≤ A+

k+1 as for
large i we have A+

k,i
≤ A+

k+1,i and therefore Ã+
k,i
≤ Ã+

k+1,i . It follows that A+ :=
⋃

k∈N A+
k

is finite-by-Abelian by Lemma 2.19 and a subgroup of A =
⋃

k∈N Ak of index at most 2.
It remains to show the uniqueness of A+ if |A : A+ | = 2. Let U , A+ be a finite-by-

Abelian index 2 subgroup of A. Pick k ∈ N and put Ũk := Ãk ∩ ϕ
−1(U ∩ Ak). Then Ũk is

of index 2 in Ãk and distinct from Ã+
k
if k is sufficiently large. Therefore Ũk contains an

element g ∈ Ãk \ Ã+
k
. Thus for large i, ϕi(g) swaps the ends of Ak,i . Thus ϕi(Ũk) contains

an infinite dihedral group and cannot be finite-by-Abelian. As this holds for all (large
enough) i, it follows easily that U ′ is not finite-by-Abelian, which is a contradiction. This
proves (1).

(2). If A is finite-by-Abelian and all choices are as in the proof of (1), then Ak,i = A+
k,i

is finite-by-Z for each k and i ≥ nk . As the order of finite subgroups is bounded by
N(Γ) there are only finitely many isomorphism classes of subgroups that are met by
the Ak,i . In particular there exists a constant M such that for all k and i the center Zk,i

of Ak,i is a subgroup of index at most M. Define Z̃k,i := Ãk ∩ ϕ
−1
i (Zk,i), for large i we

have | Ãk : Z̃k,i | ≤ M, as there are only finitely many subgroups of given (finite) index.
Thus we can assume, after passing to a subsequence, that Z̃k,i = Z̃k, j for all i, j, we
denote this group by Z̃k . It follows that ϕ(Z̃k) is central in Ak and of index at most M , in
particular |Ak : Z(Ak)| ≤ M for all k (here Z(Ak) is the center of Ak). After passing to a
subsequence we can assume that |Ak : Z(Ak)| = M0 for all k and some M0 ≤ M . Clearly
Z(Ak+1) ∩ Ak ≤ Z(Ak). Now as |Ak+1 : Z(Ak+1)| = M0 it follows that

|Ak+1 ∩ Ak : Z(Ak+1) ∩ Ak | = |Ak : Z(Ak+1) ∩ Ak | ≤ M0

and therefore Z(Ak) = Z(Ak+1) ∩ Ak , in particular Z(Ak) ≤ Z(Ak+1). Thus Z :=
∪k∈NZ(Ak) is a central subgroup (in fact the center) of A = ∪k∈NAk . Clearly |A : Z | = M0.

(3). If A is almost Abelian then A is virtually Abelian by (1) and (2). Moreover if A is
virtually Abelian then the proof of (1) goes through unchanged as images of virtually
Abelian groups are virtually Abelian, it follows that A is almost Abelian.

(4). Clearly, if A is virtually Abelian, so is every f.g. subgroup. Conversely, assume that
all finitely generated subgroups of A are virtually Abelian. This implies in particular that
Ak is virtually Abelian for all k. If infinitely many Ak are finite-by-Abelian, then each
f.g. subgroup is finite-by-Abelian as a subgroup of some Ak , and the claim follows from
Lemma 2.19. So assume that (for large enough k) Ak is not finite-by-Abelian. By (1)
Ak contains a unique finite-by-Abelian subgroup Uk of index 2. The uniqueness of Uk

implies that Uk ≤ Uk+1, as Uk+1 ∩ Ak is a finite-by-Abelian subgroup of Ak of index
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2 and therefore equal to Uk . It follows that U =
⋃

k ∈ NUk is of index 2 in A, and
finite-by-Abelian by Lemma 2.19. The assertion follows. �

We are now able to establish the following properties of virtually Abelian subgroups
which will be important later on.

Lemma 2.23. Let L be a Γ-limit group. Then the following hold.

(1) If L is finite-by-Abelian then the subgroup E ≤ L that is generated by the torsion
elements of L is finite and therefore of order at most N(Γ).

(2) If B ≤ L and A ≤ L are virtually Abelian and |A ∩ B | = ∞ then 〈A, B〉 is
virtually Abelian.

Proof. (1). Let {g0, g1, . . .} ⊂ L be the set of torsion elements of L. Again, let (ϕi) ⊂
Hom(G, Γ) be a stable sequence with induced limit map ϕ s.th. L = Lϕ . For each k ∈ N,
pick g̃k ∈ G satisfying ϕ(g̃k) = gk . Note that for each k, ϕi(g̃k) is of finite order for large
enough i. Put Ẽk := 〈{g̃0, . . . , g̃k}〉. We show that each Ek := ϕ(Ẽk) is finite, hence of
order at most N(Γ). As Ek ≤ Ek+1 for each k, this clearly implies that E =

⋃
k∈N Ek is

finite.
Fix k ∈ N. By Proposition 2.21, ϕi(Ẽk) is finite or finite-by-Z for sufficiently large i.

Assume that ϕi(Ẽk) is finite-by-Z for large i. Hence it acts invariantly on an axis in Γ and
this action is orientation-preserving. If the image is infinite, it is therefore isomorphic to
an HNN-extension (with surjective boundary monomorphisms), i.e.

ϕi(Ek) � Fi ∗Fi .

But this HNN-extension is not generated by torsion elements, which is a contradiction.
Thus ϕi(Ẽk) is finite for large i, hence of order at most N(Γ). This implies that ker ϕi ∩ Ẽk

is of index at most N(Γ) in Ẽk . As Ẽk is f.g., there are only finitely many such kernels.
The stability of (ϕi) then implies that ker ϕi ∩ Ẽk eventually stabilizes. It follows that
Ek = ϕ(Ẽk) = ϕi(Ẽk) (for large i) is finite, hence (1) is proven.

(2). Let A = 〈a0, a1, . . .〉 and B = 〈b0, b1, . . .〉 ≤ L be virtually Abelian such that A ∩ B
is infinite. As L does not contain infinite torsion subgroups (cf. Lemma 2.19) it follows
that A ∩ B contains an element of infinite order, so we assume w.l.o.g. that a0 = b0 is
of infinite order. Now for each k we choose ãk, b̃k ∈ G s.th. ϕ(ãk) = ak and ϕ(b̃k) = bk .
Define Ãk := 〈ã0, . . . , ãk〉 and B̃k := 〈b̃0, . . . , b̃k〉. The same argument as in the proof
of Lemma 2.22 shows for each k and sufficiently large i both ϕi(Ãk) and ϕi(B̃k) are
virtually Abelian, hence 2-ended. Now for large i the element ϕi(ã0) = ϕi(b̃0) is of infinite
order, which implies that ϕi(〈Ãk, B̃k〉) lies in the unique maximal 2-ended subgroup of Γ
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containing ϕi(ã0). Hence ϕi(〈Ãk, B̃k〉) is 2-ended for large enough i. It follows easily that
〈Ak, Bk〉 is virtually Abelian. Now 〈A, B〉 =

⋃
k∈N〈Ak, Bk〉, so the result follows from

Lemma 2.22(4). �

We get the following immediate consequences.

Corollary 2.24. Let L be a Γ-limit group and a ∈ L be an element of infinite order. Then

A := 〈{a′ ∈ L | 〈a, a′〉 is virtually Abelian}〉

is the unique maximal virtually Abelian subgroup of L containing a.

Proof. Let {a0, a1, . . .} be the set of those elements that satisfy that 〈a, ai〉 is virtually
Abelian. Applying Lemma 2.23(2) repeatedly implies that for each k, Ak := 〈a, a0, . . . , ak〉
is virtually Abelian. Thus A is virtually Abelian by Lemma 2.22(4). The uniqueness and
maximality of A are trivial. �

Corollary 2.25. Let A be a maximal virtually Abelian subgroup of a Γ-limit group L and
g ∈ L. If gAg−1 ∩ A is infinite then g ∈ A.

Proof. Suppose that gAg−1 ∩ A is infinite. It follows from Lemma 2.23 that 〈A, gAg−1〉

is virtually Abelian and therefore equal to A as A is maximal. Choose an element a ∈ A of
infinite order. Then 〈a, gag−1〉 ≤ A is virtually Abelian. Pick lifts g̃, ã of g, a in L. Then
ϕi(〈ã, g̃ãg̃−1〉) is virtually Abelian and therefore 2-ended for large i. Thus ϕi(g̃) preserves
or exchanges the ends of 〈ϕi(ã)〉. It follows that 〈ϕi(g̃), ϕi(ã)〉 is 2-ended for large i, thus
〈a, g〉 is virtually Abelian. The statement follows now from Corollary 2.24. �

3. The structure of groups acting on real trees

Bass–Serre theory clarifies the algebraic structure of groups acting on simplicial trees.
The structure of groups acting on real trees is more complicated but still fairly well
understood provided that the action satisfies certain properties. This theory is mainly
based on ideas of Rips who in turn applied ideas from the Makanin–Razborov rewriting
process. Rips (unpublished) described the structure of finitely presented groups acting
freely on real trees, see [17] for an account of his ideas. This was then generalized to stable
actions by Bestvina and Feighn [5]. Sela [38] then proved a version for finitely generated
groups under stronger stability assumptions; the version we present is a generalization of
Sela’s result due to Guirardel [22].

We first fix notations for graphs of groups and recall the notion of a graph of actions.
We then briefly study 2-orbifolds and describe certain actions of 2-orbifold groups on
real trees. We then formulate the structure theorem of [22] in those terms.
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3.1. Graphs of groups and the Bass–Serre tree

In this section we fix the notations for basic Bass–Serre theory as we will need precise
language later on. For details see Serre’s book [42] or [24] for more similar notation.

A graph A is understood to consist of a vertex set V A, a set of oriented edges E A, a
fixed point free involution −1 : E A→ E A and a map α : E A→ V A which assigns to
each edge e its initial vertex α(e). Moreover, we will denote α(e−1) alternatively by ω(e)
and call ω(e) the terminal vertex of e.

A graph of groups A then consists of an underlying graph A and the following data.

(1) For each v ∈ V A, a vertex group Av .

(2) For each e ∈ E A, an edge group Ae = Ae−1 .

(3) For each e ∈ E A, an embedding αe : Ae → Aα(e).

Again, the embedding αe−1 will alternatively be denoted by ωe. The maps αe and ωe are
called the boundary monomorphisms of the edge e.

An A-path from v ∈ V A to w ∈ V A of length k is a sequence

a0, e1, a1, . . . , ek, ak

where e1, . . . , ek is an edge path in A from v to w, a0 ∈ Av and ai ∈ Aω(ei ) for
i = 1, . . . , k. For two A-paths p = a0, e1, . . . , ek, ak and q = b0, f1, . . . , fl, bl satisfying
that ω(ek) = α( f1), we define a product pq by

pq := a0, e1, . . . , ek, akb0, f1, . . . , fl, bl .

An equivalence relation ∼ on the set of A-paths is defined as the relation generated by
the elementary equivalences a, e, b ∼ aαe(c), e, ωe(c−1)b and a, e, ωe(c), e−1, b ∼ aαe(c)b.
We denote the ∼-equivalence class of a an A-path p by [p]. We call an A-path reduced if
it cannot be shortened by an elementary equivalence.

Given a base vertex v0 ∈ V A, the fundamental group of A with respect to v0, π1(A, v0),
is the set of equivalence classes of A-paths from v0 to v0, with the multiplication given by
[p][q] := [pq].

Recall that the edge and vertex groups of A embed into π1(A). These embeddings are
unique up to conjugacy. If G = π1(A, v0) or G � π1(A, v0) then we call A a splitting of G.
We moreover say that G splits over a subgroup H if G = π1(A, v0) such that H is an edge
group of A.

If p = a0, e1, . . . , ek, ak then we say that p ≈ q if q ∼ a0, e1, . . . , ek, aka for some
a ∈ Av , this defines an equivalence relation on the set of A-path starting at v0. We denote
the ≈-equivalence class of p by npo. The ≈-equivalence classes are precisely the vertices
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of the Bass–Serre tree �(A, v0). We will usually simply write Ã rather than �(A, v0). For any
vertex ṽ of Ã, we will denote the projection of ṽ to V A by ↓ṽ. Thus ↓ṽ = v if ṽ = npo
where p is an A-path from v0 to v.

If we choose for each e ∈ E A a set Ce of left coset representatives of αe(Ae) in Aα(e),
then each A-path q is equivalent to a unique reduced A-path q′ = a0, e1, . . . , ek, ak such
that ai−1 ∈ Cei for 1 ≤ i ≤ k. We say that q′ is in normal form (relative to the set
{Ce | e ∈ E A}, which we usually don’t mention explicitly).

Any vertex ṽ ∈ VÃ is represented by a unique reduced A-path pṽ = a0, e1, a1, . . . ,

ak−1, ek, 1 which is in normal form. We call pṽ the representing path of ṽ. Note that any
normal form A-path p representing ṽ is of the form p = pṽa for a unique a ∈ A↓ṽ .

The edge set EÃ is then the set of pairs (ṽ1, ṽ2) of vertices satisfying

pṽ1 a1, e, 1 ∼ pṽ2 a2 (3.1)

for some e ∈ E A, a1 ∈ A↓ṽ1 and a2 ∈ A↓ṽ2 .
Note that if (ṽ1, ṽ2) ∈ EÃ, then also (ṽ2, ṽ1) ∈ EÃ as (3.1) is equivalent to

pṽ1 a1 ∼ pṽ1 a1, e, 1, e−1, 1 ∼ pṽ2 a2, e−1, 1.

Thus the map
−1 : EÃ→ EÃ, (ṽ1, ṽ2) 7→ (ṽ2, ṽ1)

is an involution on EÃ, which is fixed point free as ṽ1 , ṽ2 if (ṽ1, ṽ2) ∈ EÃ. For any
ẽ = (ṽ1, ṽ2) ∈ EÃ we put α(ẽ) = ω(ẽ−1) = ṽ1. Moreover, for ẽ = (ṽ1, ṽ2) as above, we
denote the edge e ∈ E A (cf. (3.1)), by ↓ẽ.

With the above notations, we obtain a natural action of π1(A, v0) on Ã in the following
way. For [q] ∈ π1(A, v0) put

npo := nqpo for npo ∈ VÃ

[q](np1o, np2o) := (nqp1o, nqp2o)) for (np1o, np2o) ∈ EÃ.

With this G-action on Ã, for every ṽ ∈ VÃ the map

θṽ : A↓ṽ → stabÃ ṽ, h 7→ [pṽhp−1
ṽ ]

is an isomorphism between the vertex group A↓ṽ and the stabilizer of the vertex ṽ in Ã.
Likewise, for an edge ẽ = (ṽ1, ṽ2) ∈ EÃ, the map

θẽ := θṽ1 ◦ ca1 ◦ αe : A↓ ẽ → stabÃ ẽ, (3.2)

where a1 is as in (3.1) and ca1 denotes conjugation by a1, is an isomorphism between the
edge group A↓ẽ and the stabilizer of the edge ẽ. It follows easily from (3.1) that θẽ = θẽ−1 .
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Sometimes we will need to refine a given splitting of a group, i.e. increase the
complexity of a graph of groups decomposition by splitting some vertex group in a way
that is compatible with the existing splitting. The following is obvious.

Definition & Lemma 3.1. Let A be a graph of groups, v ∈ V A, and Av a graph of
groups such that Av = π1(A

v, vv0 ) for some v
v
0 ∈ Av . Suppose that for each edge e ∈ E A

with α(e) = v, αe(Ae) is conjugate into a vertex group Av
we

for some vertex we ∈ V Av .
Then the graph of groups A′ defined below is called the refinement of A by Av . The

underlying graph A′ has vertex setV A′ = (V A \ {v})∪V Av and edge set E A′ = E A∪E Av .
Moreover for each edge e ∈ E A′ the attaching map α′ and boundary monomorphism α′e
are as follows.

(1) If e ∈ E A and α(e) , v then α′(e) = α(e) and α′e = αe.

(2) If e ∈ E Av then α′(e) = αv(e) and α′e = αv
e .

(3) If e ∈ E A and α(e) = v then α′(e) = we and α′e : Ae → Av
we

is such that iwe ◦α
′
e

is in Av conjugate to αe where iwe is the (up to conjugacy) unique inclusion of
Awe in Av .

If A′ is a refinement of A then π1(A
′) � π1(A). The operation inverse to a refinement

is called a collapse.

3.2. Graphs of actions

In this section we recall the notion of a graph of actions, see [29]. This is a way of
decomposing an action of a group on a real tree into pieces. In the structure theorem these
pieces will be of very simple types.

Definition 3.2. A graph of actions is a tuple

G = G(A) = (A, (Tv)v∈V A, (pαe )e∈EA, l)

where

• A is a graph of groups,

• for each v ∈ V A, Tv = (Tv, dv) is a real Av-tree,

• for each e ∈ E A, pαe ∈ Tα(e) is a point fixed by αe(Ae),

• l : E A→ R≥0 is a function satisfying l(e) = l(e−1) for all e ∈ E A.
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We call l(e) the length of e. If l = 0 then we omit l, i.e. we write G = G(A) =
(A, (Tv)v∈V A, (pαe )e∈EA).

The points pαe are called attaching points. In the following we will denote pα
e−1

alternatively by pωe . Note that pωe ∈ Tω(e) and that pωe is fixed by ωe(Ae).
Associated to any graph of actions G is a real tree TG obtained by replacing the vertices

of the Bass–Serre tree �(A, v0) by copies of the trees Tv and any lift ẽ ∈ EÃ of e ∈ E A by a
segment of length l(e). TG comes with a natural π1(A, v0)-action. In the remainder of this
section we will give a detailed description of the construction of TG and its natural metric.

Let G be a graph of actions as above. Choose a base vertex v0 ∈ V A and sets of left
coset representatives Ce of αe(Ae) in Aα(e) for all e ∈ E A.

For any ṽ ∈ VÃ, define Tṽ := T↓ṽ × {ṽ} to be a copy of T↓ṽ with the induced metric dṽ
given by dṽ((x1, ṽ), (x2, ṽ)) := d↓ṽ(x1, x2). We further put

TV
G

:=
⋃
ṽ∈V Ã

Tṽ .

For any edge ẽ = (ṽ1, ṽ2) ∈ EÃ and a1, a2 and e as in (3.1), we then define

pαẽ := (a1pαe , ṽ1) ∈ Tṽ1 . (3.3)

Again, for an edge ẽ we denote pα
ẽ−1 alternatively by pω

ẽ
. With notations as in (3.1) we get

pω
ẽ
= pα

ẽ−1 = (a2pα
e−1, ṽ2). We call pα

ẽ
and pω

ẽ
the attaching points of the edge ẽ.

For any (x, ṽ) ∈ TV
G
and g = [q] ∈ π1(A, v0), put

g(x, ṽ) := (ax, gṽ)

if qpṽ ∼ pgṽa. It follows from the above definitions that this defines an action of π1(A, v0)

on TV
G
with the following properties:

(1) dṽ(x, y) = dgṽ(gx, gy) for all x, y ∈ Tṽ and g ∈ π1(A, v0).

(2) gpα
ẽ
= pα

gẽ
for all ẽ ∈ EÃ and g ∈ π1(A, v0).

For any ẽ ∈ EA define Tẽ := [0, l(↓ẽ)] × {ẽ} to be a copy of the real interval [0, l(↓e)].
Let dẽ be the standard metric on Tẽ, i.e. dẽ((x, ẽ), (y, ẽ)) = |x − y | for all (x, ẽ), (y, ẽ) ∈ Tẽ.
We define

TE
G :=

⋃
ẽ∈EA

Tẽ .

Note that Tẽ consists of a single point if l(↓ẽ) = 0. Now for any (x, ẽ) ∈ TE
G

and
g ∈ π1(A, v0), put

g(x, ẽ) := (x, gẽ).
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This clearly defines an action of π1(A, v0) on TE
G
, which satisfies dẽ(x, y) = dgẽ(gx, gy)

for all x, y ∈ Tẽ and g ∈ π1(A, v0).
We can now define the tree TG . We put

TG := (TV
G
∪ TE
G )/ Û∼

where Û∼ is the equivalence relation generated by

(1) pα
ẽ
Û∼ (0, ẽ) for any ẽ ∈ EÃ,

(2) (k, ẽ) Û∼ (l(↓ẽ) − k, ẽ−1) for each ẽ ∈ EÃ and k ∈ [0, l(↓ẽ)].

The definition of TG ensure that the images of Tα(ẽ) and Tω(ẽ) in TG are joint by a
segment of length l(↓ẽ) for any ẽ ∈ EÃ, see Figure 3.1. It also takes care of the fact that
in Ã each geometric edge occurs with both orientations.

Tα(ẽ) Tẽ

Tω(ẽ)

pαẽ
pωẽ

Figure 3.1. Tα(ẽ) and Tω(ẽ) are joint by a segment of length l(↓ẽ).

It is clear from the above observations that this equivalence relation is preserved by
the π1(A, v0)-action on TV

G
∪ TE
G
, thus it induces a π1(A, v0)-action on TG .

There exists a unique π1(A, v0)-invariant path metric dG on TG such that dG(y1, y2) =

dṽ(y1, y2) if y1, y2 ∈ Tṽ , dG(y1, y2) = dẽ(y1, y2) if y1, y2 ∈ Tẽ. If y1, y2 ∈ TG do not lie in
the same edge or vertex space then dG(y1, y2) is computed as follows:

(1) If y1 = (x1, ṽ1), y2 = (x2, ṽ2) ∈ TV
G
and ẽ1, . . . , ẽk is a reduced path in Ã from ṽ1

to ṽ2 then

dG(y1, y2) = dṽ1 (y1, pαẽ1
) +

k∑
i=1

l(↓ẽi) +
k−1∑
i=1

dω(ẽi )(p
ω
ẽi
, pαẽi+1

) + dṽ2 (p
ω
ẽk
, y2)
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(2) If y1 = (x1, ẽ1) ∈ TE
G
, y2 = (x2, ṽ2) ∈ TV

G
and ẽ1, . . . , ẽk is a reduced path in Ã

with ω(ẽk) = ṽ2 then

dG(y1, y2) = (l(↓ẽ1) − x1) +

k∑
i=2

l(↓ẽi) +
k−1∑
i=1

dω(ẽi )(p
ω
ẽi
, pαẽi+1

) + dṽ2 (p
ω
ẽk
, y2)

(3) If y1 = (x1, ẽ1), y2 = (x2, ẽk) ∈ TE
G
and ẽ1, . . . , ẽk is a reduced path in Ã then

dG(y1, y2) = (l(ẽ1) − x1) +

k−1∑
i=2

l(↓ẽi) +
k−1∑
i=1

dω(ẽi )(p
ω
ẽi
, pαẽi+1

) + x2

Recall that the restriction of dG to any vertex tree Tṽ , resp. edge segment Tẽ, equals
dṽ , resp. dẽ. It therefore follows from (3.3) that the distance of two points in TG can
be computed entirely in terms of the metrics dv of the vertex trees of G and its length
function l. The case we are mostly interested in is case 1 above, i.e. the case where y1 and
y2 are contained in vertex trees Tṽ1 and Tṽ2 . If p = a0, e1, a1, . . . , ak is a reduced A-path
equivalent to p−1

ṽ1
pṽ2 , then dG(y1, y2) can be computed as

dG(y1, y2) = dα(e1)(x1, a0pαe1 )

+

k∑
i=1

l(ei) +
k−1∑
i=1

dω(ei )(p
ω
ei
, aipαei+1 ) + dω(ek )(p

ω
ek
, ak x2). (3.4)

We say that a G-tree T splits as a graph of actions G(A) if G � π1(A) and there is a
G-equivariant isometry from T to TG .

Remark 3.3. Let G be a graph of actions, e ∈ E A and g ∈ Aα(e). Assume that G′ is the
graph of actions obtained from G by replacing the attaching point pαe ∈ Tα(e) by gpαe and
the embedding αe : Ae → Aα(e) by ig ◦ αe. Then TG also splits as the graph of actions G′.

It follows from the remark that in a graph of actions splitting of a tree T we are free to
alter the attaching points within their orbits of the vertex actions. In particular, if a vertex
group Av acts with dense orbits on Tv , the attaching points in Av can be chosen to be
arbitrarily close to each other. This will turn out useful in Section 5.

3.3. 2-orbifolds

We will only be interested in 2-orbifolds that are non-spherical. Thus for us a 2-orbifold O
is a quotient of R2 by a group Γ of homeomorphisms that acts properly discontinuously. In
particular all surfaces different from the 2-sphere and the projective plane occur this way.
Our discussion of 2-orbifolds is very brief and informal; for a more detailed discussion
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the reader is referred to the article of P. Scott [37] or the book of Zieschang, Vogt and
Coldewey [46]. Note that we can assume that R2 is either endowed with the standard
Euclidean metric or with a metric of constant curvature -1 making it isometric to the
hyperbolic plane, and that Γ acts by isometries.

A 2-orbifold O = R2/Γ is topologically a surface but points whose lifts in R2 have
non-trivial stabilizers are endowed with a marking that reflects the structure of the
stabilizer. The stabilizers are in Homeo(R2) conjugate to a finite group of Euclidean
isometries and are therefore of one of the following types:

(1) Zp and generated by a rotation of order p.

(2) A dihedral group D2p and generated by two reflections whose product is a rotation
of order p with p ∈ N.

(3) A group of order two being generated by a reflection.

In the quotient, points of the first type are depicted as points labeled by p and are
referred to as cone points, points of the last type are depicted as points of fat lines and are
referred to as points of the reflection boundary and points lifting to points with dihedral
stabilisers occur as points incident to two reflection lines and are labeled by p if the
dihedral group was of type D2p . Thus 2-orbifolds can locally be depicted as in Figure 3.2.
We further say that a 2-orbifold is of cone type if it has no reflection boundary.

p
p

Figure 3.2. The local structure of a 2-orbifold

There is a well-known definition for the fundamental group of a 2-orbifold which
generalizes the case of a surface, see [37]. In the case of an orbifold O of cone type with
cone points of orders p1, . . . , pk this is easily done as follows. First let SO be the surface
(with boundary) obtained by replacing each cone point with a boundary component. Then
define π1(O) to be the quotient of π1(SO) obtained by adding the relations γ

pi
i where γi

is the homotopy class represented by the boundary component corresponding to the ith
cone point. This fundamental group recovers the group Γ just as the fundamental group of
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a manifold recovers the group of Decktransformations on the universal covering, in fact a
completely analogous theory of coverings can be developed for 2-orbifolds, see [37].

We do not consider points on the reflection boundary to lie in the boundary of a
2-orbifold. Thus 2-orbifolds as we defined them are open and have no boundary. If however
Γ is finitely generated then we can, as in the surface case, find a compact suborbifold
of O = R2/Γ with boundary whose complement consist of ends of type (0, 1) × S1 or
quadrilaterals (0, 1) × [0, 1] where (0, 1) × {0} and (0, 1) × {1} belong to the reflection
boundary. This compact suborbifold is a natural compactification of the original orbifold
and we will ignore the difference between the orbifold and this compact subspace. Thus
orbifolds have boundary components which are either loops or segments joining points
on the reflection boundary. Figure 3.3 is an example of a 2-orbifold with two boundary
components, one of each type.

3

4

5

2
3

3

5

5

5

Figure 3.3. A 2-orbifold with a dihedral and a cyclic boundary component

The subgroup of Γ corresponding to the boundary components are either infinite
cyclic groups or infinite dihedral groups if the boundary component is a circle or line,
respectively. In Figure 3.3 they are represented by dotted lines, in particular the points on
the reflection boundary are not part of the boundary. We call the subgroups of an orbifold
group corresponding to a boundary component parabolic or peripheral.

Given a simple closed curve on a 2-orbifold that does not bound a disk with at most one
cone point, cutting the orbifold along this line corresponds to decomposing the orbifold
group into an HNN-extension or amalgamated product over the infinite cyclic group. We
call a simple closed curve of this type essential.
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Figure 3.4. Curves representing HNN-extensions over Z and D∞

Similarly cutting along a segment joining two points on the reflection boundary that
does not bound a disk without cone points in the interior and at most one exceptional point
on the reflection boundary corresponds to a splitting along an infinite dihedral group.
Again we call such segments essential.

Figure 3.5. Curves representing amalgamated products over Z and D∞

Note that the examples of essential curves and segments depicted in Figure 3.4 and
Figure 3.5 are orbifolds without boundary, however a similar statement holds for orbifolds
with boundary: Given an essential simple closed curve or an essential segment joining
two points on the reflection boundary that does not meet the boundary of the orbifold, this
curve induces a splitting of the orbifold group along an infinite cyclic or infinite dihedral
group such that all peripheral subgroups are elliptic in this splitting.

In the remainder of this section we will describe an important class of actions of
fundamental groups of cone type orbifold groups on real trees. We start with actions
of fundamental groups of surfaces with boundary. While these groups are algebraically
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just free groups the action is constructed using the surface geometry. The orbifold group
actions are then constructed as quotients of those actions.

Surfaces with boundary can be described by unions of bands that have a foliation with
a transverse measure. We briefly describe their structure, see [5] for a detailed discussion.
Suppose that the following data is given.

(1) Γ is the union of disjoint closed intervals I1, . . . , Ik ⊂ R.

(2) J1, . . . , Jm ⊂ R are disjoint closed intervals. For each i ∈ {1, . . . ,m} the length
of Ji is ri and f +i , f −i : Ji → Γ are isometric embeddings such that the following
hold:

(a) All but finitely many points of Γ lie in the image of precisely two of the
maps f +i , f −i .

(b) No point of Γ lies in the image of four of the maps f +i , f −i .

From this data we construct a surface with boundary by gluing bands of width ri to Γ
using the maps f +i and f −i as follows. For each i define the band Bi as Bi := Ji × [0, 1]
and define fi : Ji × {0, 1} → Γ as fi(t, 0) = f +i (t) and fi(t, 1) = f −i (t) for all t ∈ Ji and
1 ≤ i ≤ m.

The associated band complex is then defined as

Σ := (Γ t B1 t · · · t Bm) /∼

where ∼ is the equivalence relation generated by fi(x) ∼ x for all x ∈ Ji × {0, 1} and
1 ≤ i ≤ m. Clearly Σ is a surface with boundary, see Figure 3.6 for a once-puncured torus.

Figure 3.6. A union of (two) bands homeomorphic to a puctured torus
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Now each band Bi has a natural foliation where the leaves are the sets {t} × [0, 1] with
t ∈ Ji . These foliations of the Bi extend to a foliation of Σ where leaves of the Bi are
joint along common endpoints in Γ to leaves of Σ. Thus the leaves of the foliation of Σ
are graphs with vertices of valency at most 3. Moreover there are at most 2m vertices of
valency 3 and each boundary component is a subset of some leaf. In particular all but
finitely many leaves are homeomorphic to R or S1. We will be mostly interested in cases
where the foliation of Σ has the property that every leaf is dense and either homeomorphic
to R or consists of a single boundary component of Σ with infinite rays attached to them.
Such foliations are called arational. If we assume that the foliation depicted in Figure 3.6
is arational then there is precisely one leaf that is not homeomorphic to R, it consists of
the single boundary component with two rays attached to it.

Now the foliation of Σ induces a foliation of the universal covering Σ̃ and the action of
π1(Σ) on Σ̃ by deck transformations respects this foliation, i.e. gives an action on the leaf
space T . It is clear that any element corresponding to a boundary component of Σ acts
with a fixed point on T as it preserves some lift of the leaf containing the corresponding
boundary component. T comes with a pseudo-metric where the distance between two
leaves x and y is the length of the shortest path starting in x and ending in y. The length of
the curve is here measured with respect to the natural transverse measure of the foliation,
in particular for any curve contained in the lift of some band the transverse measure
is simply the length of the projection to the base; see [5] for details. If the foliation is
arational then the pseudo-metric is a metric turning T into a real tree; for the remainder
of this section we assume this to be the case.

Let γ1, . . . , γk be homotopy classes representing the boundary components. By
construction the γi act with a fixed point on T . Recall that we obtain a 2-orbifold group
H = π1(O) from π1(Σ) by factoring out relations of the type γrii for 1 ≤ i ≤ k with
ri ∈ N0. Denote the kernel of the projection π1(Σ) → H by N . Now H clearly acts on
T ′ := T/N and T ′ is again a real tree as N is generated by elliptic elements. We say that
this action of H is dual to an arational foliation on the cone type orbifold O.

3.4. The structure theorem

In this section we state the structure theorem for finitely generated groups acting on
R-trees as it appears in [22]. This theorem (and its relatives) are usually simply referred
to as the Rips machine.

We recall from [22] that a G-tree T satisfies the ascending chain condition if for any
sequence of arcs I1 ⊃ I2 ⊃ . . . in T whose lengths converge to 0, the sequence of the
stabilizers of the segments is eventually constant.
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The following theorem is a generalization of Sela’s version of the Rips machine for
finitely generated groups [38]. Other than Sela’s original version it allows us to deal with
torsion.

Theorem 3.4 (Main Theorem of [22]). Consider a non-trivial action of a f.g. group G
on an R-tree T by isometries. Assume that

• T satisfies the ascending chain condition,

• for any unstable arc J ⊂ T ,

– stab(J) is finitely generated
– stab(J) is not a proper subgroup of any conjugate of itself, i.e. ∀ g ∈

G, (stab(J))g ⊂ stab(J) ⇒ (stab(J))g = stab(J).

Then either G splits over the stabilizer of an unstable arc or over the stabilizer of an
infinite tripod, or T splits as a graph of actions

G = (A, (Tv)v∈V A, (pαe )e∈EA)

where each vertex action of Av on the vertex tree Tv is either

• simplicial: a simplicial action on a simplicial tree,

• of orbifold (or Seifert) type: the action of Av has kernel Nv and the faithful action
of Av/Nv is dual to an arational measured foliation on a closed 2-orbifold with
boundary, or

• axial: Tv is a line and the image of Av in Isom(Tv) is a finitely generated group
acting with dense orbits on Tv .

Note that if the G-tree T admits a splitting as a graph of actions G as in Theorem 3.4
and if A contains a nondegenerate simplicial vertex tree, we get a refined splitting of T as
a graph of actions

G′ = (A′, (Tv)v∈V A′, (pαe )e∈EA′, l)

such that any vertex tree is either of axial type, or of orbifold type or is degenerate, i.e.
consists of a single point. This is easily achieved by decomposing each simplicial vertex
tree using Bass–Serre theory, possibly after subdiving some edges to ensure that the
original attaching points are vertices. Note that if an edge e of the refined graph of actions
has non-zero length then both Tα(e) and Tω(e) are degenerate.
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4. The virtually Abelian JSJ-decomposition of Γ-limit groups

Throughout this chapter Γ is a hyperbolic group. We first study basic properties of virtually
Abelian splittings of Γ-limit groups and then discuss virtually Abelian JSJ-decompositions
of finitely generated Γ-limit groups, splittings that reveal all virtually Abelian splittings
simultaneously. We closely follow Sela’s construction of the JSJ-decomposition [38]
but similar to the discussion of Bestvina and Feighn [6] do not require the JSJ to be
unfolded. The fact that the JSJ can be chosen to be unfolded can be established using
the acylindricity of the splittings. This has been observed by Rips and Sela [36] in the
case of splittings over cyclic groups. That this can also be done in the current setting has
been established independently by Guiradel and Levitt [23] and the first author in his PhD
thesis [34].

4.1. Modifying splittings

Recall that a graph of groups is minimal if the corresponding Bass–Serre tree contains
no proper invariant subtree. A finite graph of groups is minimal iff there is no surjective
boundary monomorphism into a vertex group of a valence 1 vertex. A graph of groups
is called reduced if no boundary monomorphism is surjective. Thus any reduced finite
graph of groups is minimal.

The JSJ-decompositions we construct reveal virtually Abelian splittings only up to
certain modifications. We start by introducing these modifications, they all leave the
fundamental group unchanged.

Definition 4.1. Let A be a graph of groups. A splitting move on A is one of the following
modifications of A.

(1) Boundary slide: Let e ∈ E A. A boundary slide (of the boundary mono-
morphism αe) is the replacement of αe by cg ◦ αe for an element g ∈ Aα(e).

(2) Edge slide: Let e1 , e2 ∈ E A such that ω(e1) = α(e2). Suppose that ωe1 (Ae1 ) is
in Aω(e1) conjugate to a subgroup of αe2 (Ae2 ).

Then we first perform a boundary slide such that ωe1 (Ae1 ) ≤ αe2 (Ae2 ) and then
replace e1 with an edge e′1 with edge group Ae′1

= Ae1 such that

(a) α(e′1) = α(e1) and αe′1 = αe1 .
(b) ω(e′1) = ω(e2).
(c) ωe′1

= ωe2 ◦ α
−1
e2 ◦ ωe1 .

The combination of the initial boundary slide and the subsequent modification is
called an edge slide of e1 over e2.
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(3) Folding/Unfolding: Let e ∈ E A and αe(Ae) < C < Aα(e). A folding along e is the
replacement of Aω(e) byC ∗Ae Aω(e), Ae byC and the corresponding replacement
of the boundary monomorphisms αe and ωe. The inverse of a folding along e is
an unfolding along e.

Note that we usually only consider graphs of groups up to boundary slides.
An edge slide can be alternatively defined on the Bass–Serre tree: Given two inequiva-

lent edges f1 and f2 such that ω( f1) = α( f2) and stab f1 ≤ stab f2 we slide f1 over f2 in
an equivariant way. One can also think of it as first (equivariantly) subdividing f1 into
f ′1 and f ′′1 and then (equivariantly) identifying f ′′−1

1 with f2. Note that the action on the
vertex set of the tree is unchanged under this operation.

f1

f2

f ′
1

f2
x y

z x z

y

Figure 4.1. An edge slide as seen in the tree

The following lemma is trivial as the existence of a surjective boundary monomorphism
is preserved by boundary slides and edge slides.

Lemma 4.2. Let A be a graph of groups. Assume that A′ is obtained from A by boundary
slides and edge slides. Then A is reduced and minimal iff A′ is reduced and minimal.

4.2. Virtually Abelian splittings of Γ-limit groups

In this section we study splittings of Γ-limit groups as fundamental groups of graphs
of groups with virtually Abelian edge groups. We call such splittings virtually Abelian
splittings.

In the following we call a virtually Abelian group large if it contains a one-ended
subgroup. Note that for finitely generated virtuallyAbelian groups, being large is equivalent
to being one-ended. A crucial observation in this section will be that any finite virtually
Abelian splitting of a Γ-limit group can be modified by boundary slides and some further
simple modifications such that all large virtually Abelian subgroups are elliptic.

Lemma4.3. Let L be a Γ-limit groupwith virtually Abelian graph of groups decomposition
A. Let M ≤ L be a maximal large one-ended virtually Abelian subgroup which is not
elliptic in A.
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Then M acts with an invariant line T ⊂ Ã and the following hold: If e1 and e2 are
edges in T and g ∈ L s.t. ge1 = e2, then g ∈ M. In particular stabM (e) = stabL(e) for
any edge e of T and g ∈ M iff gT = T .

Proof. As M does not contain a non-Abelian free group it either acts with a fixed point
or with an invariant line or parabolically, i.e. fixes a unique end of T . By assumption M
does not act with a fixed point, thus we need to show that M does not act parabolically.

Assume to the contrary that M acts parabolically on Ã. Thus M preserves a unique end
and it follows that either M is a strictly ascending HNN extension or that every element of
M is elliptic. Being virtually Abelian, M can not be a strictly ascending HNN-extension,
hence every g ∈ M is elliptic. Let e1, e2, . . . be a ray in Ã representing the fixed end. We
get an infinite ascending sequence of stabilizers

stabM (e1) ≤ stabM (e2) ≤ . . . ,

such that M =
⋃

stabM (ei). As M is infinite and there is a uniform bound for the order
of finite Γ-limit groups it follows that there exists i0 such that stabM (ei) is infinite for
i ≥ i0. This implies in particular that stabM (ei) = stabL(ei) for i ≥ i0 as M is the unique
maximal virtually Abelian subgroup of L containing stabM (ei). As E A is finite there
exists i > j ≥ i0 and g ∈ L such that ei = gej . Now

stabL(ej) = stabL(ei) ∩ stabL(ej)

= stabL(gej) ∩ stabL(ej)

= g stabL(ej)g−1 ∩ stabL(ej),

thus by Corollary 2.25 g is contained in the maximal virtually Abelian subgroup containing
stabL(ej), i.e. g ∈ M. But g acts without fixed point, which contradicts the assumption
on the action of M .

Thus M preserves a line T ⊂ Ã. As M is large it follows that stabM (e) is infinite for
all e ⊂ T . M is the unique maximal virtually Abelian subgroup of L containing stabL(e)
for any edge e of T . It follows that stabL(e1) = stabM (e1) = stabM (e2) = stabL(e2) for
any two edges e1, e2 of T . Thus the above arguments show that g ∈ M if ge1 = e2. �

Proposition 4.4. Let L be a one-ended Γ-limit group with finite virtually Abelian graph
of groups decomposition A. Then after finitely many edge slides we can assume that for
any large maximal virtually Abelian subgroup M of L one of the following holds.

(1) M is elliptic.

(2) M is the unique maximal virtually Abelian subgroup containing some edge
group Ae and M is of type A1 ∗Ae A2 where A1 ≤ Aα(e), A2 ≤ Aω(e) and
|A1 : αe(Ae)| = |A2 : ωe(Ae)| = 2.
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(3) M is the unique maximal virtually Abelian subgroup containing the edge group
Ae of some loop edge e. Furthermore M = Ae∗Ae where the stable letter is the
element corresponding to the loop edge e, in particular αe(Ae) = ωe(Ae) ≤ Aα(e).

Proof. Assume that M is not elliptic. By Lemma 4.3, there is an M-invariant line T ⊂ Ã.
Let f1, f2, . . . , fk be an edge path in T that is a fundamental domain for the action
of M on T .

If k = 1, i.e. if the edge path consists of a single edge, then there is nothing to show as
we are either in situation (2) or in situation (3). Thus we can assume that k ≥ 2.

It follows from Lemma 4.3 that stabL( f1) = stabL( f2). Thus we can L-equivariantly
slide f1 over f2. The new fundamental domain for M has only k − 1 edges. After finitely
many slides the fundamental domain for M consists of a single edge, which implies that
the claim of the proposition holds for M .

The conclusion now follows from the observation that an edge is slid over another
edge only if their edge groups are contained in the same maximal virtually Abelian
subgroup. Thus the above process for one maximal virtually Abelian subgroup does not
affect the validity of the conclusion of the proposition for the other. Thus we can use
finitely many edge slides to obtain the desired conclusion for all maximal large virtually
Abelian subgroups simultaneously. This process is finite as there are only finitely many
edge groups and therefore only finitely many conjugacy classes of large maximal virtually
Abelian subgroups that act non-elliptically. �

We now explain how splittings that satisfy the conclusion of Proposition 4.4 can be
modified such that afterwards all large virtually Abelian subgroups are elliptic. We call a
virtually Abelian splitting with this property compatible.

Let A be a finite virtually Abelian splitting of L satisfying the conclusion of Proposi-
tion 4.4. Let M be a large maximal virtually Abelian subgroup of L that is not elliptic.

Assume first that M satisfies (2) of Proposition 4.4. Then we subdivide the edge e
into edge e1 and e2 such that α(e1) = α(e), ω(e2) = ω(e) and ω(e1) = α(e2) = v′ is
a new vertex. Moreover Ae1 = A1, Ae2 = A2 and Av′ = A1 ∗Ae A2 and the boundary
monomorphisms are the natural ones, see Figure 4.2 for an illustration of both the case
where e is a non-loop edge, and where e is a loop edge.

If M satisfies (3) of Proposition 4.4 then we remove the edge e and add a new edge e′

with Ae′ = Ae such that α(e′) = α(e), and ω(e′) = w is a new vertex with vertex group
Aw = Ae∗Ae . The boundary monomorphisms are the natural embeddings of Ae, see
Figure 4.3.

We now argue that for a finitely generated Γ-limit grou L there exists an upper bound
for the complexity of a minimal (and reduced) virtually Abelian splitting of L, which
only depends on the rank of L and N(Γ). For a given graph of groups A, we define its
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Ae A1 A2

A1 ∗Ae A2 Aω(e)Aα(e)Aω(e)Aα(e)

A1 ∗Ae A2Ae

A1 A2

Aα(e) Aα(e)

Figure 4.2. A new vertex with maximal virtually Abelian vertex group

Ae

Ae

Ae∗Ae

Aα(e)Aα(e)

Figure 4.3. A new vertex with maximal virtually Abelian vertex group

complexity C(A) by
C(A) := e(A) + β1(A),

where e(A) := |E A|/2 denotes the number of edge pairs of the graph A underlying A, and
β1(A) is the first Betti number of A. While the Betti number is bounded from above by
the rank of L, a bound for e(A) can be obtained from Theorem 4.5 and Lemma 4.6 below.
Recall that a graph of groups is called (k,C)-acylindrical if the stabilizer of any segment
[v,w] in the Bass–Serre tree with d(v,w) > k is of order at most C.

The following theorem from [45] provides a bound for the complexity of (k,C)-
acylindrical splittings. It is a generalization of Sela’s acylindrical accessibility theorem [38]
which deals with the case C = 1, see also [44].

Theorem 4.5. Let A be a reduced and minimal (k,C)-acylindrical graph of groups with
k ≥ 1. Then

e(A) ≤ (2k + 1) · C · (rank π1(A) − 1).
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Thus Theorem 4.5 together with Lemma 4.6 below provide a bound for the complexity
of reduced virtually Abelian compatible splittings of Γ-limit groups.

For an infinite virtually Abelian subgroup H ≤ L we denote by MA(H) the conjugacy
class of K where K is the unique maximal virtually Abelian subgroup containing H.
Note that MA(H) = MA(H ′) if H and H ′ are conjugate. Thus it makes sense to speak of
MA(Ae).

Lemma 4.6. Let A be a compatible virtually Abelian splitting of L and assume that all
edge groups are infinite. Then A can be modified by a finite sequence of edge slides to be
(2, N(Γ))-acylindrical.

Proof. Note first that for any e ∈ E A the representatives of MA(Ae) are elliptic. If the
representatives are large this holds as A is assumed to be compatible; otherwise they
contain an elliptic subgroup of finite index (a conjugate of Ae) which also implies that
they are elliptic.

For any conjugacy class of maximal virtually Abelian elliptic subgroups [M] we
choose a vertex v[M] such that M is conjugate into Av[M ] . By a finite sequence of edge
slides any edge e can be slid such that it is incident to vMA(Ae ). The (2, N(Γ))-acylindricity
of the obtained splitting is easily verified: Otherwise there exists a segment Y of length 3
in the Bass–Serre tree fixed by some infinite virtually Abelian group H. The construction
implies that any edge ofY must be incident to a vertex that is a lift of v[M]. AsY is of length
3 there must be two distinct such vertices, say v1 and v2. Choose g ∈ L such that gv1 = v2.
It follows that H ⊂ stab(v1) ∩ stab(v2) = stab(v1) ∩ g stab(v1)g

−1. As H is infinite and
stab(v1) is maximal virtually Abelian it follows from Corollary 2.25 that g ∈ stab(v1), a
contradiction. Thus the obtained graph of groups is (2, N(Γ))-acylindrical. �

The construction of the (2, N(Γ))-acylindrical graph of groups in the proof of Lemma 4.6
depends on the choice of the vertices v[M] and the output is therefore not canonical. We
will obtain a canonical splitting (up to boundary slides) by performing the following
normalization process for a given compatible virtually Abelian splitting A of L. As before
we assume that all edge groups are infinite.

This process is only a slight modification of the proof of Lemma 4.6. Choose
M1, . . . , Mk such that [M1], . . . , [Mk] is the collection of those conjugacy classes of
maximal virtually Abelian subgroups which appear as MA(Ae) for some e ∈ E A. This
collection is clearly finite as E A is finite.

For each i = 1, . . . , k choose a vertex vi such that Mi is conjugate into Avi and
introduce a new vertex v[Mi ] and an edge ei with α(ei) = vi and ω(ei) = v[Mi ] such that
Av[Mi ]

= Aei = Mi , ωei = idMi and that Im(αei ) ≤ L is conjugate to Mi . We then slide
as in the proof of Lemma 4.6, i.e. slide every edge e such that it is incident to vMA(Ae ).
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Finally, we minimize the obtained graph of groups by removing unnecessary valence 1
vertices and corresponding edges.

It is clear that, up to boundary slides, the obtained graph of groups does not depend on
the choice of the vi . We say that A is in normal form if it is the output of the normalization
process for some graph of groups A′ (or equivalently, if the normalization process of
A reproduces A). We further call the vertices v1, . . . , vk in the above construction the
characteristic vertices of the normal form. By construction any edge of a graph of groups
in normal form is incident to exactly one characteristic vertex, thus the underlying graph is
bipartite. A graph of groups in normal form is (2, N(Γ))-acylindrical by the same argument
as in the proof of Lemma 4.6 and minimal by construction. Note that a graph of groups in
normal form may be non-reduced as some edge groups may be maximal virtually abelian
subgroups of L. It is however easily verified that any graph of groups in normal form
can be obtained by applying the normalization process to some reduced, minimal and
(2, N(Γ))-acylindrical graph of groups A′. As by construction C(A) ≤ 2C(A′) it follows,
using Theorem 4.5, that there is a global upper bound for the complexity of all normal
form splittings of a given finitely generated one-ended Γ-limit group L.

4.3. Morphisms of graphs of groups

For a based simplicial G-tree T = (T, ṽ0) and a based simplicial H-tree Y = (Y, ũ0) a
morphism from T to Y is a pair (ϕ, f ) where ϕ : G → H is a homomorphism and
f : T → Y is a simplicial map such that f (ṽ0) = ũ0 and that

f (gx) = ϕ(g) f (x)

for all x ∈ T and g ∈ G. Any such morphism can be encoded on the level of the associated
graphs of groups. We will discuss such morphisms for graphs of groups and make some
basic observations.

A morphism from a graph of groups A to a graph of groups B is a tuple

f = ( f , {ψv | v ∈ V A}, {ψe | e ∈ E A}, {oe | e ∈ E A})

where

(1) f : A→ B is a graph morphism.

(2) ψv is a homomorphism from Av to Bf (v) for all v ∈ V A.

(3) ψe is a homomorphism from Ae to Bf (e) for all e ∈ E A.

(4) oe ∈ Bf (α(e)) for all e ∈ E A.
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(5) ψα(e) ◦ αe = ioe ◦ αf (e) ◦ ψe for all e ∈ E A.

We will denote o−1
e−1 alternatively by te. A morphism fromA toB induces a homomorphism

f∗ : π1(A, v0) → π1(B, f (v0))

given by

[a0, e1, a1, . . . , ak−1, ek, ak] 7→ [b0, f (e1), b1, . . . , bk−1, f (ek), bk]

where bi = teiψω(ei )(ai)oei+1 for i = 0, . . . , k (with te0 = tek+1 = 1).
We will write ψfv or ψfe instead of ψv or ψe if we want to make explicit that the maps

come from the morphism f. We will further say that a morphism f is surjective if f∗ is
surjective.

The morphism f determines a morphism f̃ : �(A, v0) → �(B, u0) (that maps the base
point ṽ0 to ũ0). The pair (f∗, f̃ ) is a morphism from the π1(A, v0)-tree �(A, v0) to the
π1(B, u0)-tree �(B, u0), see [24] for details. Moreover any morphism from a G-tree T to an
H-tree Y occurs this way.

The following simple proposition will be usefull in subsequent sections. In the statement
of the proposition we identify the fundamental group of A and the fundamental group of
Ā obtained from A by edge collapses and subdivision in the natural way.

Proposition 4.7. Let A and B be finite graphs of groups and

η : π1(A, v0) → π1(B, u0)

be an isomorphism. Suppose further that there exists a map h : V A→ V B such that the
following hold:

(1) h(v0) = u0

(2) η(Av) is conjugate to a subgroup of Bh(v) for all v ∈ V A.

Then there exists a graph of groups Ā obtained from A by collapses of edges followed by
subdivisions of edges and a morphism f : Ā→ B such that f (v) = h(v) for all v ∈ V A
and f∗ = η.

Proof. Let TA = �(A, v0) and TB = �(B, u0) be the Bass–Serre trees with base points ṽ0 and
ũ0. It suffices to show that, after (equivariant) collapses and subdivisions of edges of TA,
there exists a morphism (η, f ) from the π1(A, v0)-tree TA to the π1(B, u0)-tree TB such
that f (ṽ0) = ũ0 and that pB( f (v)) = h(pA(v)) for all v ∈ VTA where pA : TA → A and
pB : TB → B are the canonical quotient maps.

Pick amaximal treeYA in A and a lift Ỹ A toTA such that the lift of v0 is ṽ0. By assumption
we can choose for each vertex v ∈ Ỹ A a vertex wv ∈ TB such that η(stab v) ≤ stabwv and
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Figure 4.4. The restriction of f to Ỹ A

that h(pA(v)) = pB(wv); we may further assume that wṽ0 = ũ0. We now define a map
f : VTA → VTB by gv 7→ η(g)wv for all v ∈ Ỹ A and g ∈ π1(A, v0). The map is easily
extended to the edges of TA by mapping an edge e = (v1, v2) to the reduced edge path p
from f (v1) to f (v2). Here we apply k − 1 subdivisions to the edge e if the length k of p is
greater than 1, or collapse e in case k = 0.

To make the map simplicial we need to collapse e if f (v1) = f (v2) and subdivide it
dTB ( f (v1), f (v2)) − 1 times otherwise. �

Remark 4.8. It follows from the above proof that the number of subdivisions applied to an
edge e = (v1, v2) ∈ E A is bounded by diamB̃(Fix η(Ae)) − 1 as η(Ae) fixes the segment
[ f (v1), f (v2)].

4.4. The virtually Abelian JSJ-decomposition of a Γ-limit group

In this section we establish the existence of virtually Abelian JSJ-decompositions of
finitely generated Γ-limit groups. A virtually Abelian JSJ-decomposition of a group G is
a splitting of G in which all compatible virtually Abelian splittings of G are apparent.

In the following we say that a vertex group Av of a graph of groups A is a QH-vertex
group (quadratically hanging vertex groups) if the following hold.

(1) Av is finite-by-orbifold, i.e. there exists an orbifold O with fundamental group
O = π1(O), some finite group E and a short exact sequence

1→ E → Av
π
→ O → 1.

(2) For any edge e ∈ E A s.t. α(e) = v there exists a peripheral subgroup Oe of O
such that αe(Ae) is in Av conjugate to a finite index subgroup of π−1(Oe).

We will also say that a subgroup of G is a QH-subgroup if it is conjugate to a QH-vertex
group of some splitting A of G.
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It is a trivial but important observation that any essential simple closed curve or
essential segment joining two points on the reflection boundary of O induces a splitting
of G = π1(A) over a 2-ended group. We call such a splitting geometric with respect to the
QH-subgroup Av .

We can depict the splitting A by drawing the orbifold O for the vertex group Av and
depicting all non-QH vertex groups as balls joint by edges.

Figure 4.5. A QH-subgroup with a simple closed curve representing a
splitting of π1(A) as an HNN-extension

Recall that a 1-edge splitting A1, i.e. a splitting as an amalgamated product or an
HNN-extension, of a group G is called elliptic with respect to another splitting A2 if
the edge group of A1 is conjugate to a subgroup of a vertex group of A2. Otherwise
A1 is called hyperbolic with respect to A2. It is an important observation [36] that if G
is one-ended and A1 and A2 are 1-edge splittings of G over 2-ended groups then the
two splittings are either both elliptic or both hyperbolic with respect to each other. In
the first case we say that A1 and A2 are elliptic-elliptic and in the latter that they are
hyperbolic-hyperbolic.

The following theorem is the key step in the proof of the JSJ-decomposition, it
implies in particular the existence of a splitting of a Γ-limit group that encodes all
hyperbolic-hyperbolic splittings over 2-ended subgroups.

Theorem 4.9. Let G be a f.g. one-ended group. Assume that there exists N such that any
finite subgroup of G has order at most N .

Then there exists a reduced, minimal (2, N)-acylindrical graph of groups decomposition
A of G such that the following hold:

(1) Any 1-edge splitting of G over a 2-ended group that is hyperbolic-hyperbolic
with respect to another 1-edge splitting over a 2-ended group is geometric with
respect to some QH-vertex group of A.
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(2) If B is a virtually Abelian splitting of G such that no edge group of B is 2-ended
and hyperbolic-hyperbolic with respect to another splitting over a 2-ended group
then the QH-vertex groups of A are elliptic with respect to B.

(3) Any QH-subgroup of G is conjugate to a subgroup of a QH-vertex group Av ,
moreover this subgroup corresponds to a suborbifold of the orbifold corresponding
to v. In particular every maximal QH-subgroup is conjugate to a vertex group
of A.

Proof. For the proof we can essentially refer to the construction of the JSJ-decomposition
of Dunwoody and Sageev [15] and Fujiwara and Papasoglu [16], but we need a few
adaptions.

First, note that any given splitting can be modified to be (2, N)-acylindrical while
preserving the conjugacy classes of the QH-vertex groups. Indeed, we first refine the
splitting by replacing each QH-vertex group Av by a tree of groups consisting of a vertex
xv with vertex group Av and for each peripheral subgroup P an edge eP with edge group
P and a vertex xP with vertex group P such that α(eP) = xv and ω(eP) = xP with the
boundary monomorphisms being the obvious ones. We may refine in such a way that
all previous edges are incident to one of the vertices of type xP . We then collapse all
edges not incident to a vertex of type xv . The (2, N)-acylindricity of the obtained splitting
follows from the fact that for any QH-vertex group Av and peripheral subgroups P1 and
P2 corresponding to distinct boundary components the following hold.

(1) gP1g
−1 ∩ P1 is finite for all g ∈ Av\P1.

(2) gP1g
−1 ∩ P2 is finite for all g ∈ Av .

This observation implies in particular that the number of QH-vertex groups of any
splitting of G is bounded in terms of N and the rank of G because of Theorem 4.5. This
also bounds the complexity (genus and number of exceptional points) of the orbifolds
corresponding to the QH-vertex groups as orbifolds of large complexity can be cut along
essential simple closed curves or segments to produce a splitting with a higher number of
QH-vertex groups that is again (2, N)-acylindrical.

Now, Dunwoody and Sageev [15] and Fujiwara and Papasoglu [16] construct splittings
such that arbitrary finite collections of hyperbolic-hyperbolic splittings over 2-ended
groups can be seen as geometric splittings in QH-vertex groups. In their proofs they then
assume that G is finitely presented so they can apply Bestvina–Feighn accessibility [4]
to guarantee termination of the construction. In our case we can exploit the fact that the
obtained splittings are (2, N)-acylindrical after the modifications discussed above. The
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same argument was applied in the construction of the quadratic decomposition in [36].
(3) also follows as in [15, 16, 36].

To see (2) suppose that a QH-vertex group Av of A is non-elliptic in B. Then there
exists a geometric 1-edge splitting D corresponding to some essential simple closed
curve or essential segment on the orbifold such that the single edge group De of D is
non-elliptic in B, see Corollary 4.12 of [16]. It follows that D is hyperbolic with respect
to the 1-edge splitting corresponding to some edge f ∈ EB, i.e. the splitting obtained
by collapsing all edges of B but f . Note that Bf is elliptic in D: If Bf is 2-ended this
holds by assumption on B and if Bf is large then Bf must act on D̃ with infinite pointwise
stabilizer contradicting the (2, N)-acylindricity of D. It follows, see Remark 2.3 of [16]
that G splits over a subgroup of De of infinite index, i.e. that G splits over a finite group.
This contradicts the one-endedness of G. �

Before we proceed with the virtually Abelian JSJ-decomposition, we introduce some
notation concerning virtually Abelian vertex groups of splittings. Recall that if M is
an infinite virtually Abelian subgroup of a Γ-limit group then M+ denotes the unique
maximal finite-by-Abelian subgroup of M which is of index at most 2.

Definition 4.10. LetA be a graph of groups decomposition of a finitely generated 1-ended
Γ-limit group L. Let v ∈ V A such that Av is virtually Abelian.

Let ∆ be the set of homomorphisms η : A+v → Z such that η(αe(A+e )) = 0 for all
e ∈ E A with α(e) = v. We then define

P+v := {g ∈ A+v | η(g) = 0 for all η ∈ ∆}.

A simple homology argument shows that A+v/P
+
v is a finitely generated free Abelian

group whose rank is bounded from above in terms of rank L and the valence of v in A.
Together with Theorem 4.9 this implies in particular that JSJ-decompositions in the sense
of the following definition exist.

Definition 4.11. Let L be a finitely generated one-ended Γ-limit group andA be a virtually
Abelian compatible splitting of L. Then A is called a virtually Abelian JSJ-decomposition
of L if the following hold.

(1) Every splitting over a 2-ended group that is hyperbolic-hyperbolic with respect to
another splitting over a 2-ended group is geometric with respect to a QH-subgroup
of A.

(2) Any edge group of A that can be unfolded to be finite-by-Abelian is finite-by-
Abelian.
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(3) For any virtually Abelian vertex group Av , the rank of A+v/P
+
v cannot be increased

by unfoldings.

(4) A is in normal form and of maximal complexity among all virtually Abelian
compatible splittings of L that satisfy (1)–(3).

In the following we refer to vertex groups of a virtually Abelian JSJ-decomposition
which are neither QH nor virtually Abelian as rigid. Note that any virtually Abelian
JSJ-decomposition can be obtained from a splitting as in Theorem 4.9 by refinements of
non-QH-subgroups, unfoldings and the normalization process. This is true as the maximal
QH-subgroups must be elliptic by Definition 4.11(2).

The following theorem describes the basic properties of virtually Abelian JSJ-
decompositions of Γ-limit groups. In the following we say that a graph of groups
B is visible in A if B is obtained from A by a sequence of collapses.

Theorem 4.12. Let L be a finitely generated one-ended Γ-limit group and let A be a
virtually Abelian JSJ-decomposition of L. Then the following hold.

(1) Let B be a virtually Abelian compatible splitting of L such that all maximal
QH-subgroups are elliptic. Assume further that B is either in normal form or
a 1-edge splitting. Then B is visible in a graph of groups obtained from A by
unfoldings followed by foldings and edge slides.

(2) Any other JSJ-decomposition B of L can be obtained from A by a sequence of
unfoldings and foldings.

Remark. While Theorem 4.12(2) implies that any finite collection of JSJ-decompositions
has a common unfolding we do not claim that the JSJ can be chosen to be unfolded, i.e.
such that no further unfolding is possible.

Proof. We first prove (1). Let TA and TB be the respective Bass–Serre-trees of A and
B. For each v ∈ V A, by restricting the G-action on TB to Av , we obtain a (possibly
trivial) splitting Av of Av corresponding to a minimal Av-invariant subtree. Note that by
assumption these splittings are trivial for QH-vertex groups.

Denote by A′ the graph of groups obtained by refining A in each vertex v by Av , and
normalizing this refined graph of groups. By construction, neither the Betti number nor
the number of edges of A decrease by the refinement. As the complexity cannot increase
by the maximality assumption, it follows that both the Betti number and the number of
edges remain unchanged, in particular C(A′) = C(A). We show that A′ can be obtained
from A by unfoldings and that B is visible in A′ after foldings and edge slides.
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By construction, all vertex groups of A′ are elliptic in A. Therefore, by Lemma 4.7,
there is a graph of groups Ā obtained from A′ by collapses and subdivisions and a
morphism f : Ā→ A with f∗ = idG , which maps the characteristic vertices of A′ to the
characteristic vertices of A. The (2, N(Γ))-acylindricity of A implies that the stabilizer
of a segment of length 2 in the Bass–Serre tree Ã can only have infinite stabilizer if its
midpoint corresponds to a characteristic vertex. Thus the proof of Proposition 4.7 implies
that no subdivision is necessary as one endpoint of each edge path that occurs as an
image of an edge must correspond to a characteristic vertex and as characteristic and
non-characteristic vertices alternate.

Moreover, as A is minimal, TA does not contain a proper G-invariant subtree, so f
is surjective. This implies that no edges are collapsed as #E A = #E A′. It follows that
Ā = A′, and we obtain a morphism, again called f, from A′ to A whose underlying graph
morphism f is a graph isomorphism.

For each e ∈ E A′, we have A′e ≤ Af (e) (we identify A′ with f(A′), in particular we
write A′e instead of ψ ′e(A′e)). Assume that for some e, A′e is a proper subgroup of Af (e),
and assume w.l.o.g. that α(e) is the characteristic vertex of MA(A′e). Then we can perform
a fold along e, replacing A′e by Af (e) and A′

ω(e)
by Af (e) ∗A′e A′

ω(e)
. After applying finitely

many such folds we get that A′e � Af (e) for all e ∈ E A′. As f∗ : π1(A
′) → π1(A) is an

isomorphism, it follows that A′, after the foldings, is isomorphic to A. Conversely, A′ can
be obtained from A by unfoldings.

We now show that B is visible in a splitting obtained from A′ by foldings and edge
slides. By construction all vertex groups of A′ are elliptic in B. Again there is a graph of
groups Ā, which is obtained from A′ by collapses of edges, and a morphism f : Ā→ B.
The argument that no subdivision is necessary is the same as above.

After foldings that replace the edge groups Āe with Bf (e) we can assume that f is
bijective on edge groups. Assume now that f (e1) = f (e2) for some e1, e2 ∈ E Ā, in
particular Āe1 = Āe2 = Bf (e1). Possibly after changing the orientation of e1 and e2 we can
assume that α(e1) = α(e2) = vMA(Ae1 )

.
We can now alter Ā by identifying e1 and e2 by a Stallings fold of type IA or IIIA,

see [4], clearly f factors through this fold. Note that this fold can also be thought of as first
sliding e1 over e2 and then collapsing e1. After finitely many such operations we obtain a
graph of groups Â and a morphism f̂ : Â→ B such that f̂ is a graph isomorphism, that is
bijective on edge groups and induces an isomorphism on the level of the fundamental
group. Thus Â is isomorphic to B. As Â has been obtained from A′ by edge collapses,
foldings and edge slides it follows that B is visible in a splitting obtained from A′ by
foldings and edge slides as the collapses can be performed last. This concludes the proof
of (1).
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If B is itself a JSJ-decomposition of L then the same argument that showed that A can
be obtained from A′ by foldings shows that B can be obtained from A′ by foldings. This
proves (2). �

We conclude this section by defining the modular group of a one-ended Γ-limit group
with respect to a given virtually Abelian splitting, using the following definition of natural
extensions of vertex automorphisms and the subsequent definition of Dehn twists.

Definition 4.13. Let G be a group with a splitting G = π1(A, v0), and v ∈ V A. Assume
that σv ∈ Aut(Av) is an automorphism such that for each e ∈ E A with α(e) = v there
exists an element γe ∈ Av such that σv(a) = γeaγ−1

e for all a ∈ αe(Ae). Then the map

φ : G→ G, [a0, e1, a1, . . . , en, an] 7→ [ā0, e1, ā1, . . . , en, ān]

where

āk =


ak ak < Av

γ−1
e−1
k

σv(ak)γek+1 ak ∈ Av

(γe−1
0
= γen+1 = 1) is a well-defined automorphism of G. We call it a natural extension of

σv (with respect to the base vertex v0), and say that σv is naturally extendable.

Note that a natural extension of a vertex automorphism σv is not unique as the γe are
not uniquely determined by σv .

Definition 4.14. Let A be a graph of groups, e ∈ E A and g ∈ Aα(e) such that gag−1 = a
for all a ∈ ωe(Ae). Then we call the automorphism f∗ of π1(A) induced by the morphism

f := (idA, {ψv = idAv | v ∈ V A}, {ψe = idAe | e ∈ E A}, {oe | e ∈ E A})

with o−1
e−1 = te = g and of = 1 for f , e−1 the Dehn twist along e by g.

Note that in the case of 1-edge splittings this just recovers the usual Definition of a
Dehn twist. In the case of an amalgamated product, i.e. a splitting with a single non-loop
edge e, the automorphism f∗ : π1(A, α(e)) → π1(A, α(e)) is given by

f∗([a0, e, a1, e−1, a2, . . . , a2k−2, e, a2k−1, e−1, a2k])

= [a0, e, ga1g
−1, e−1, a2, . . . , a2k−2, e, ga2k−1g

−1, e−1, a2k].

Definition 4.15. Let A be a virtually Abelian splitting of a one-ended group L. Then
ModA(L) ≤ Aut(L) is the group generated by the following automorphisms.

(1) Inner automorphisms of L.
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(2) If e ∈ E A with Ae finite-by-Abelian and Ae is the 1-edge splitting obtained from
A by collapsing all edges but e: A Dehn twist along e by an elliptic (with respect
to A) element g ∈ Z(M+) where M is the maximal virtually Abelian subgroup
containing Ae.

(3) Natural extensions of automorphisms of QH-subgroups.

(4) Natural extensions of automorphisms of maximal virtually Abelian vertex groups
Av which restrict to the identity on P+v and to conjugation on each virtually
Abelian subgroup U ≤ Av with U+ = P+v .

Remark. Note that the extendable automorphisms of the QH-subgroups all correspond to
automorphisms of the corresponding orbifold. We also note that the above Dehn twists
along e by g can be realized in the following way: If g is contained in Av , we may slide
the edge e (by a finite sequence of edge slides) to obtain a graph of groups A′ where
v = α′(e). This induces an isomorphism ϕ from π1(A) to π1(A

′) for the obtained graph
of groups A′. Now, consider f as in Definition 4.14, inducing the Dehn twist along e by g
in A′. Then ϕ−1 ◦ f∗ ◦ ϕ is the desired map.

It turns out that if A is a virtually Abelian JSJ-decomposition of L then ModA(L)
contains all other modular groups.

Lemma 4.16. Let A be a virtually Abelian splitting of a one-ended Γ-limit group L
and assume that A′ is obtained from A by edge slides and boundary slides. Then
ModA(L) = ModA′(L).

Proof. It is obvious that boundary slides preserve the modular group. So assume thatA′ is
obtained fromA by an edge slide of e1 over e2, i.e. e1 is replaced by e′1, using the notations
of Definition 4.1. It is easy to see that all natural extensions of vertex automorphisms, as
well as any Dehn twist along an edge distinct from e2 are unaffected by the edge slide.

Now assume that α is a Dehn twist along e2 by g ∈ L. Then, in A′, α appears as the
product of the Dehn twists by g along e2 and by ω−1

e′1
◦ ωe2 (g) along e′1. �

Proposition 4.17. Let L be a finitely generated one-ended Γ-limit group, A be a virtually
Abelian JSJ-decomposition of L and B be a virtually Abelian splitting of L. Then

ModB(L) ≤ ModA(L).

Proof. We first deal with the case where B is compatible. Let φ ∈ ModB(L). While
there is nothing to prove if φ is an inner automorphism of L, we need to show that the
Dehn twists and the natural extensions of vertex automorphisms arising in ModB(L) are
contained in ModA(L).
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First, assume that φ is a Dehn twist along an edge e ∈ EB. By Theorem 4.12, the
induced 1-edge splitting of L with edge e and edge group Be is visible inA after unfoldings,
foldings and edge slides. As unfolding and folding the edge group does not alter the
maximal virtually Abelian subgroup M that contains Ae, M+ is also unchanged. Thus
the presence of the Dehn twist is preserved by foldings and unfoldings unless an edge is
folded such that the corresponding edge group ceases to be finite-by-Abelian. But since
the edge groups of the JSJ-decomposition are finite-by-Abelian if possible they do exist
in the JSJ if they exist in any splitting. Moreover, edge slides preserve the Dehn twist by
Lemma 4.16.

Now assume that φ is a natural extension of an automorphism σ ∈ Aut(Bv) for some
v ∈ V B. If v is a QH-subgroup, there is nothing to show as these automorphisms lift to
automorphisms of the QH-vertex group of A containing the QH-vertex group of B. Thus
we can assume that Bv is virtually Abelian. We may assume that Bv is maximal virtually
Abelian, as otherwise the maximal virtually Abelian subgroup Bv would be conjugate
into another vertex group Bv′ as B is assumed to be compatible and we may assume that φ
is a natural extension of an automorphism of Bv′ . It follows that there is a vertex u ∈ V A
such that Au = Bv . We show that φ arises as a natural extension of σ in A. It clearly
suffices to show that P+u ⊂ P+v .

It follows from Theorem 4.12 that after unfolding A we get a graph of groups A′ such
that there exists a morphism from A′ to B. Denote the image of the vertex u in A′ by
u′. The existence of this morphism implies that P+u′ ⊂ P+v , thus it suffices to show that
P+u = P+u′ . Now both A+u/P

+
u and A+u/P

+
u′ are finitely generated free Abelian groups and

as A is a JSJ-decomposition it follows that rank A+u/P
+
u ≥ rank A+u/P

+
u′ . As the quotient

map θ : A+u → A+u/P
+
u factors through A+u/P

+
u′ this implies that θ is an isomorphism as

f.g. free Abelian groups are hopfian. Thus P+u ⊂ P+v .
If B is not compatible, we can use edge slides to assure that B satisfies the conclusion of

Proposition 4.4, by Lemma 4.16 the slides do not change ModB(L). We will further modify
B by performing the modifications discussed following the proof of Proposition 4.4 to
produce a compatible splitting. This modification possibly increases but does not decrease
ModB(L). The Dehn twists along the edges that are being collapsed now occur as natural
extensions of automorphisms of virtually Abelian vertex groups. Thus the claim follows
from the case of B being compatible. �

Corollary 4.18. Let L be a finitely generated one-ended Γ-limit group andA,A′ virtually
Abelian JSJ-decompositions of L. Then ModA(L) = ModA′(L). In particular we can
define

Mod(L) := ModA(L)

where A is an arbitrary virtually Abelian JSJ-decomposition of L.
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5. Γ-factor sets of one-ended groups

The term of factor sets was coined in [6] in the context of free groups. In this chapter
we define Γ-factor sets for an arbitrary group Γ, which are a natural generalization of
factor sets. The goal of this chapter is the proof of Theorem 5.2, which states that if Γ is
hyperbolic, any finitely generated one-ended group G admits a Γ-factor set. This is the
main step in the construction of Makanin–Razborov diagrams.

5.1. Γ-Factor sets

Definition 5.1. Let G and Γ be groups and H ≤ Aut(G). A Γ-factor set of G relative to
H is a finite set of proper quotient maps {qi : G→ Γi} such that for each non-injective
homomorphism q : G → Γ, there exists some α ∈ H such that q ◦ α factors through
some qi .

The following is the main theorem of Section 5.

Theorem 5.2. Let G be a f.g. one-ended group and Γ be a hyperbolic group. Then the
following hold.

(1) If G is not fully residually Γ then there exists a Γ-factor set of G relative to {id}.

(2) If G is fully residually Γ then there exists a Γ-factor set of G relative to Mod(G).

The proof of the first part of Theorem 5.2 is trivial. Indeed, if G is not fully residually
Γ, then there is a finite set S ⊂ G \ {1} such that for any ϕ ∈ Hom(G, Γ), S ∩ ker ϕ , ∅.
Thus the set of quotient maps

{qs : G→ G/〈〈s〉〉 | s ∈ S}

is a Γ-factor set relative to {id}.
If G is fully residually Γ the argument is significantly more involved and it turns out to

be crucial to allow for precomposition with modular automorphisms as it allows us to
only consider short homomorphisms in the sense of Definition 5.3 below. Recall that by
Lemma 2.3 G is a Γ-limit group, thus Mod(G) is defined (cf. Corollary 4.18). For the
remainder of Section 5, we fix a f.g. one-ended group G and a hyperbolic group Γ with
fixed finite generating sets SG and SΓ respectively.

Definition 5.3. A homomorphism ϕ : G→ Γ is called short relative to H ≤ Aut(G), if
for every α ∈ H and g ∈ Γ,

|ϕ| ≤ |cg ◦ ϕ ◦ α |

(where cg denotes conjugation by g and | · | is as in Definition 2.12).
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Remark 5.4. It follows that a homomorphism that is short relative to any subgroup of
Aut(G) is conjugacy short and therefore satisfies (2.4) of Theorem 2.11. Thus every
convergent sequence of pairwise distinct short homomorphisms from G to Γ yields a
non-trivial limit action of G on a real tree.

For the remainder of this chapter we will not always explicitly mention Mod(G), i.e.
short will always mean short relative to Mod(G) and Γ-factor set will mean Γ-factor set
relative to Mod(G). It will always be obvious that the constructed automorphisms are
indeed modular automorphisms.

The proof of the second claim of Theorem 5.2 is by contradiction, i.e. we assume that
G does not admit a Γ-factor set. This assumption implies the following.

Lemma 5.5. Suppose that G is fully residually Γ and that G does not admit a Γ-factor set.
Then there exists a stably injective convergent sequence (ϕi) ⊂ Hom(G, Γ) of pairwise
distinct non-injective short homomorphisms.

Proof. For i ∈ N, let Bi ⊂ G be the ball of radius i with center 1 in G (with respect
to the word metric). For each i, there is a non-injective ϕi ∈ Hom(G, Γ) such that
Bi ∩ ker ϕi = {1}, as otherwise the set of quotient maps

{qg : G→ G/〈〈g〉〉 | g ∈ Bi \ {1}}

would be a Γ-factor set of G. Moreover, since the definition of the factor set allows
precomposition by a modular automorphism of G, each ϕi can be chosen to be short.

Clearly, the obtained sequence (ϕi) of short homomorphisms is stably injective. Since
each ϕi is non-injective, it occurs only finitely many times in the sequence. Thus (ϕi)
has a convergent subsequence of pairwise distinct non-injective homomorphisms, see
Lemma 2.6. �

In the remainder of this chapter we prove the following proposition, which yields a
contradiction to the conclusion of Lemma 5.5 and therefore implies Theorem 5.2.

Proposition 5.6. Let (ϕi) be a stably injective convergent sequence of pairwise distinct
homomorphisms from G to Γ. Then the ϕi are eventually not short.

Remark 5.7. If (ϕi) ⊂ Hom(G, Γ) is a stably injective sequence, we can associate to (ϕi)
a sequence (ϕ̂i) where ϕ̂i = cgi ◦ ϕi ◦ αi , for some αi ∈ Mod(G) and gi ∈ Γ, and ϕ̂i is
short for each i ∈ N. After passing to a subsequence we can again assume that (ϕ̂i) is
stable. Proposition 5.6 implies that Q := G/ker

−→
(ϕ̂i) is a proper quotient of G. This is an

instance of a shortening quotient discussed in Section 7.1.

Section 5.2 is entirely devoted to the proof of Proposition 5.6.
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5.2. The shortening argument

Let (ϕi) be as in Proposition 5.6. By Theorem 2.6, (ϕi) converges to a non-trivial action
of G on an R-tree T = (T, x0).

Since ker
−→
(ϕi) = 1 it follows that the action of G = G/ker

−→
(ϕi) on T satisfies the

stability assertions of Theorem 2.17. This implies that T satisfies the assumptions of
Theorem 3.4. As G is assumed to be one-ended and the stabilizers of unstable arcs are
finite, G does not split over the stabilizer of an unstable arc. It follows that T splits as a
graph of actions. We will use this decomposition of the action of G on T to show that for
large i, the homomorphisms ϕi are not short, more precisely we will construct modular
automorphisms αi ∈ Mod(G) such that |ϕi ◦ αi | < |ϕi | for large i.

Let G = G(A) be the graph of actions decomposition of T given by Theorem 3.4.
We identify G with π1(A, v0) and assume that the basepoint x0 is given by x0 = (x̄0, ṽ0),
where ṽ0 = n1o is the base vertex of Ã = �(A, v0) and x̄0 ∈ Tv0 . Moreover, we denote the
metric dG of G simply by d. By Remark 3.3 we can assume that the following hold for
any e, f ∈ E A.

(1) If α(e) = v0 and x̄0 is Av0 -equivalent to pαe then x̄0 = pαe .

(2) If α(e) = α( f ) and pαe is Aα(e)-equivalent to pα
f
then pαe = pα

f
.

In the construction of the shortening automorphisms we need to deal with each of
the different types of vertex trees of G, we will do this in the following three sections
before plugging it all together to conclude. The shortening argument first appeared in [35]
but the underlying ideas are also implicit in the work of Razborov. In order to deal with
torsion a number of additional issues need to be addressed.

5.2.1. Axial components

The purpose of this section is to prove the following.

Theorem 5.8. Let v1 ∈ V A be an axial vertex. For any finite subset S ⊂ G there exists
some φ ∈ Mod(G) such that for any g ∈ S the following hold.

• If [x0, gx0] has a nondegenerate intersection with a vertex space Tṽ and ↓ṽ = v1,
then d(x0, φ(g)x0) < d(x0, gx0),

• otherwise, d(x0, φ(g)x0) = d(x0, gx0).

The main step is to construct an automorphism of the axial vertex group that shortens
the action on its vertex tree and that can be extended to an automorphism of G. We start
by studying the algebraic structure of axial groups.
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Let GA = Av1 be a vertex group with an axial action on a tree TA = Tv1 . We assume
that the group GA does not preserve the ends of TA, i.e. that GA contains elements that
act by reflections. We denote the index 2 subgroup of GA which preserves the ends by
G+A. By Theorem 2.17, G+A is finite-by-Abelian. The case where GA preserves the ends
follows by considering only G+A.

Let E := 〈{g ∈ G+A | |g | < ∞}〉. E is normal in GA of order at most N(Γ) by
Lemma 2.23. Put H := GA/E and denote by π the corresponding quotient map

π : GA→ H = GA/E .

As E is contained in the kernel of the action of GA on TA, the action factors through π
and induces an action of H on TA. Let H+ = π(G+A). As G+A is finite-by-Abelian and any
finite subgroup of G+A lies in E , H+ is Abelian. Moreover, H+ is torsion-free as for any
g ∈ G+A s.t. gk ∈ E for some k ≥ 1 we have gk · |E | = 1, and so g ∈ E by construction.

Since the image of G+A (and therefore also the image of H) in Isom(TA) is f.g. by
Theorem 3.4, there is a decomposition

H+ = A ⊕ B

where A is f.g. free Abelian and B is the torsion-free Abelian kernel of the action of H+

on TA. Put Ã = π−1(A) and B̃ = π−1(B).

Lemma 5.9. H is the semi-direct product Z2 n H+. The action of Z2 = 〈s | s2〉 on H+ is
given by shs−1 = h−1 for all h ∈ H+.

Proof. Let s be an arbitrary element of H \ H+ and let s̃ be a lift of s to GA, clearly
s̃ ∈ GA \ G+A. It follows as in the proof of Lemma 2.23 that for large i the element ϕi(s̃)
is of finite order as it either lies in a finite group or in a 2-ended group exchanging the
ends. Thus s̃ is of finite order, i.e. s̃2 ∈ E . It follows that s2 = π(s̃2) = 1. This proves that
Z2 n H+ = H.

We show that the action is as desired. Let h ∈ H+. Choose h̃ such that π(h̃) = h. For
large i the group ϕi(〈h̃, s̃〉) is 2-ended with ϕi(s̃) exchanging ends and h̃ preserving ends.
Here it is easily verified that ϕi(h̃s̃h̃s̃−1) is of finite order for large i; thus h̃s̃h̃s̃−1 ∈ E , i.e.
hshs−1 = 1. It follows that shs−1 = h−1 as desired. �

As B̃ is the kernel of the action of GA on TA it follows that Ã normalises B̃, i.e. Ã acts
on B̃ by conjugation. We can immediately see that the kernel of this action is of finite
index in Ã:

Lemma 5.10. Let K B̃

Ã
be the kernel of the action of Ã on B̃. Then | Ã : K B̃

Ã
| < ∞.

Proof. As G+A is finite-by-Abelian, by Lemma 2.22 (2), Z(G+A) is of finite index in G+A.
Therefore, Z(G+A) ∩ Ã is of finite index in Ã and clearly this group is contained in K B̃

Ã
. �
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Let now s̃ be a lift of s to GA and Auts̃(GA) ≤ Aut(GA) be the subgroup consisting
of those automorphisms that restrict to the identity on 〈B̃, s̃〉 and preserve Ã. Let
Aut∗s̃(GA) ≤ Auts̃(GA) be the subgroup consisting of those automorphisms α that
conjugate all point stabilizers pointwise. Thus for any α ∈ Aut∗s̃(GA) and x ∈ TA there
exists some gx such that α(g) = gxgg

−1
x for all g ∈ stab x.

Lemma 5.11. Aut∗s̃(GA) is a finite index subgroup of Auts̃(GA).

Proof. Note first that for any x ∈ TA either stab x = B̃ or stab x = 〈B̃,w s̃〉 for some
w ∈ Ã. As all elements of Auts̃(GA) act trivially on B̃ by definition we can ignore the
first case.

Note further that there are only finitely many conjugacy classes of stabilizers of type
〈B̃,w s̃〉; this follows from the fact that if A is free Abelian of rank n then 〈A, s〉 has
precisely 2n conjugacy classes of reflections. As Auts̃(GA) acts on conjugacy classes of
stabilizers this implies that there exists a finite index subgroup Aut′s̃(GA) of Auts̃(GA)

that preserves conjugacy classes of stabilizers.
For any point stabilizer C = 〈B̃,w s̃〉 let AutCs̃ (GA) ≤ Aut′s̃(GA) be the subgroup

consisting of those automorphisms α that conjugate C, i.e. for which α(c) = gcg−1 for
all c ∈ C and some fixed g. As α(hch−1) = α(h)α(c)α(h)−1 it follows that AutCs̃ (GA) =

AuthCh−1

s̃ (GA) for every conjugate hCh−1 of C.
To prove the claim of the lemma it suffices to show that for any such C the group

AutCs̃ (GA) is of finite index in Aut′s̃(GA). Indeed as there are only finitely many conjugacy
classes and the intersection of finitely many subgroups of finite index is of finite index,
this proves the claim.

Let now C = 〈B̃,w s̃〉. Suppose that there exists a sequence (αi)i∈N ⊂ Aut′s̃(GA) such
that αi AutCs̃ (GA) , αj AutCs̃ (GA) for i , j. For each i choose fi ∈ Ã and ei ∈ E such that

αi(w s̃) = fiw s̃ei f −1
i .

Such elements fi and ei exist as by assumption αi(w) ∈ Ã and C is conjugate to αi(C).
After passing to a subsequence we can assume that ei = e for all i ∈ N and some fixed
e ∈ E . Moreover, we may assume that fib f −1

i = fjb f −1
j for all i, j ∈ N and b ∈ B̃, this

follows as the kernel of the action of Ã on B̃ by conjugation is of finite index in Ã.
It follows that for all i, j we have

αj(w s̃) = ( fj f −1
i )αi(w s̃)( fj f −1

i )
−1

which implies that the restriction of αj ◦ α
−1
i to αi(C) is conjugation by fj f −1

i . As αi(C)
is conjugate to C this implies that αj ◦ α

−1
i ∈ AutCs̃ (GA), a contradiction. �
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Any α ∈ Auts̃(GA) restricts to an automorphism of Ã and therefore induces an
automorphism of A = Ã/E . Denote the subgroup of Aut(A) induced in this fashion by
Ks̃ . Moreover let K∗s̃ be the subgroup of Aut(A) induced by Aut∗s̃(GA)

Lemma 5.12. Let s̃ be as above. Then Ks̃ is of finite index in Aut(A).

Proof. Suppose that A is free Abelian of rank n and let a1, . . . , an be a basis of A. The
proof is by contradiction thus we assume that Ks̃ is of infinite index in Aut(A). Choose
a sequence (αi) of elements of Aut(A) that represent pairwise distinct cosets of Ks̃, i.e.
that αi ◦ α−1

j < Ks̃ for all i , j. For each i ∈ N let Pi = (xi1, . . . , xin) where xi
k
is a lift of

αi(ak) ∈ A to Ã for 1 ≤ k ≤ n.
After passing to a subsequence we can assume that for all i, j ∈ N and 1 ≤ k, l ≤ n the

following hold:

(1) [xi
k
, xi

l
] = [x j

k
, x j

l
].

(2) The actions of xi
k
and x j

k
on B̃ coincide.

(3) s̃xi
k
s̃−1xi

k
= s̃x j

k
s̃−1x j

k
.

This however implies that for i, j the map x j
k
7→ xi

k
for 1 ≤ k ≤ n extends to an

automorphism α ∈ Aut(GA, 〈B̃, s̃〉). Now this automorphism induces αi ◦ α−1
j on A

contradicting our assumption that αi ◦ α−1
j < Ks̃ . �

As an immediate consequence of Lemma 5.11 and Lemma 5.12 we get the following.

Corollary 5.13. Let s̃ be as above. Then K∗s̃ is of finite index in Aut(A).

The following proposition is the main technical result of this section.

Proposition 5.14. Let GA be as above and x, x1, . . . , xk ∈ TA. For each finite S ⊂ GA

and ε > 0, there exist elements γ1, . . . , γk ∈ GA and an automorphism σ of GA such that
the following hold.

(1) For each g ∈ S,
d(x, σ(g)x) < ε. (5.1)

(2) σ(g) = γigγ−1
i for 1 ≤ i ≤ k and g ∈ stab xi .

(3) d(x, γi xi) < ε (i = 1, . . . , k).

We can moreover assume that γi = γj if xi = xj and that γi xi = xi if xi = x.
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Proof. Possibly after choosing a different reflection s we can assume that a lift s̃ of s
fixes a point ps̃ such that d(x, ps̃) ≤ ε/4.

Let a1, . . . , an be a basis of the free Abelian group A; recall that A acts on TA by
translations with dense orbits. The Euclidean algorithm guarantees the existence of a
sequence (αi) ⊂ Aut(A) such that the translation length of αi(ak) (1 ≤ k ≤ n) converges
to 0 for i → ∞. This implies that the translation lengths of αi(a) converge to 0 for any
a ∈ A. As |Aut(A) : K∗s̃ | < ∞ we can choose (αi) ⊂ K∗s̃ . For any i ∈ N let α̃i be a lift of
αi to Aut∗s̃(GA).

Now any element g ∈ S can be written as ãg b̃g s̃ηg where ãg ∈ Ã, b̃g ∈ B̃ and
ηg ∈ {0, 1}. As α̃i ∈ Auts̃(GA) it follows that α̃i(g) = α̃i(ãg)b̃g s̃η̃g for all i ∈ N and
g ∈ S. Moreover as α̃i(ãg) is a lift of αi(π(ãg)) it follows that the translation length of
α̃i(ãg) converges to 0. Thus we get

lim
i→∞

d(x, α̃i(g)x) = lim
i→∞

d(x, α̃i(ãg)b̃g s̃ηg x)

and

lim
i→∞

d(x, s̃ηg x) + lim
i→∞

d(s̃ηg x, b̃g s̃ηg x) + lim
i→∞

d(b̃g s̃ηg x, α̃i(ãg)b̃g s̃ηg x)

≤ ε/2 + 0 + 0 = ε/2

for all g ∈ S. This implies that for sufficiently large i assertions (1) and (2) are satisfied
for σ = α̃i .

If stab xi = B̃ then γi can be replaced by γih with h ∈ K B̃

Ã
while preserving (2). As

K B̃

Ã
acts on TA with dense orbits this ensures the existence of some γi such that both (2)

and (3) are satisfied.
If stab xi is of type 〈B̃, ãs̃〉 for some ã ∈ Ã then the fixed point of α̃i(stab xi) =

〈B̃, α̃i(ã)s̃〉 converges to ps̃ as the translation length of α̃i(ã) converges to 0. As this fixed
point equals γi xi and as d(x, ps̃) ≤ ε/4 assertion (3) follows for large i.

Now assume that x = xi for some i. Then either stab x = B̃ or we can choose s̃ such
that stab x = 〈B̃, s̃〉. As in both cases the α̃i restrict to the identity on stab x = stab xi we
can choose γi = 1. Moreover, it is trivial that we can choose γi = γj whenever xi = xj .
The claim follows. �

Proof of Theorem 5.8. For any g ∈ S and ṽ with ↓ṽ = v1 the intersection Tṽ ∩ [x0, gx0] is
either empty or a (possibly degenerate) segment. If all such intersections are degenerate
for all g ∈ S, there is nothing to show as the theorem holds for φ = idG . Thus we can
assume that at least one such intersection is non-degenerate. Let r > 0 be the length of
the shortest non-degenerate segment that occurs this way.
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Recall from (3.4) that if q is a normal form A-path

q = a0, e1, a1, e2, . . . , ek, ak (5.2)

and g = [q] then

d(x0, gx0) = dv0 (x̄0, a0pαe1 ) +

k−1∑
j=1

dω(e j )(p
ω
e j
, ajpαe j+1 ) + dv0 (p

ω
ek
, ak x̄0). (5.3)

x0 gx0

Tṽ2

Tṽ3

Tṽ1

Tṽ0

Figure 5.1. The path for an element g = [a0, e1, . . . , e3, a3]

Choose a point p ∈ Tv1 , if v0 = v1 then we choose p := x̄0. Let Sv1 be the set of
elements of Av1 that occur in the normal forms of the elements in S. By Proposition 5.14,
there is an automorphism σ of Av1 and for each e ∈ E A with α(e) = v1 an element
γe ∈ Av1 such that the following hold.

• dv1 (p, σ(a)p) <
r
6 for all a ∈ Sv1 .

• For e ∈ E Awithα(e) = v1, the restriction ofσ toαe(Ae) ≤ stab pαe is conjugation
by γe, and

dv1 (p, γepαe ) <
r
6
. (5.4)

• γe = γ f if pαe = pα
f
and γepαe = pαe if pαe = p.

Fix such an automorphism σ and let φ ∈ Aut(G) be a natural extension of σ (cf. Defini-
tion 4.13). Thus if g = [a0, e1, . . . , ek, ak] as beforewe get φ(g) = [ā0, e1, ā1, e2, . . . , ek, āk]
where āi = γ−1

e−1
i

σ(ai)γei+1 if ai ∈ Av1 (and γe−1
0
= γek+1 = 1) and āi = ai otherwise. In

particular we have

d(x0, φ(g)x0) = dv0 (x̄0, ā0pαe1 ) +

k−1∑
j=1

dω(e j )(p
ω
e j
, ājpαe j+1 ) + dv0 (p

ω
ek
, āk x̄0). (5.5)
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In the following we compare the summands occuring in (5.3) to those occuring in (5.5).
If ai = āi the corresponding summands clearly coincide. Thus we can assume that
ai , āi ∈ Av1 . We distinguish two cases.

Case 1. If i ∈ {1, . . . , k − 1} then we get

dω(ei )(p
ω
ei
, āipαei+1 )

= dω(ei )(p
ω
ei
, γ−1

e−1
i

σ(ai)γei+1 pαei+1 ) = dω(ei )(γe−1
i

pωei , σ(ai)γei+1 pαei+1 )

≤ dω(ei )(γe−1
i

pωei , p) + dω(ei )(p, σ(ai)p) + dω(ei )(σ(ai)p, σ(ai)γei+1 pαei+1 )

≤
r
6
+

r
6
+ dω(ei )(p, γei+1 pαei+1 ) ≤

2r
6
+

r
6
=

r
2
.

If moreover dω(ei )(p
ω
ei
, aipαei+1 ) = 0 then pωei and pαei+1 are Av1 -equivalent and therefore

pωei = pαei+1 by assumption, thus ai ∈ stab pωei and γe−1
i
= γei+1 , by assumption this implies

that σ(ai) = γei+1 aiγ−1
ei+1 . The above computation therefore implies that

dω(ei )(p
ω
ei
, āipαei+1 ) = dω(ei )(p

ω
ei
, pαei+1 ) = 0.

Case 2. If i = 0 (the case i = k is analogous) then we get

dv0 (x̄0, ā0pαe1 ) = dv0 (p, a0γe1 pαe1 ) ≤ dv0 (p, a0p) + dv0 (a0p, a0γe1 pαe1 )

≤
r
6
+ dv1 (p, γe1 pαe1 ) ≤

r
6
+

r
6
=

r
3
.

If moreover dv1 (p, a0pαe1 ) = 0 then p and pαe1 are Av1 equivalent and therefore p = pαe1

by assumption. Thus a0 ∈ stab p and therefore γe1 ∈ stab p. Thus

dv1 (p, ā0pαe1 ) = dv1 (p, a0γe1 p) = dv1 (p, p) = 0.

Tṽ0

Tṽ1

Tṽ2

x0

φ(g)x0

Figure 5.2. The path for φ(g) if precisely ṽ2 is of type v1
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Comparing the summands in (5.3) to those occuring in (5.5) shows that each summand
is preserved unless it corresponds to a non-degenerate intersection with some vertex tree
Tṽ with ↓ṽ = v1 (of length at least r) in which case it replaced by at most r

2 . This proves
the claim. �

5.2.2. Orbifold components

Analogous to Theorem 5.8, we prove the existence of a shortening automorphism provided
there exists a vertex of orbifold type.

Theorem 5.15. Let v1 ∈ V A be an orbifold type vertex. For any finite subset S ⊂ G there
exists some φ ∈ Mod(G) such that the following hold for any g ∈ S.

• If [x0, gx0] has a nondegenerate intersection with a vertex space Tṽ and ↓ṽ = v1,
then d(x0, φ(g)x0) < d(x0, gx0),

• otherwise, d(x0, φ(g)x0) = d(x0, gx0).

The proof of Theorem 5.15 follows from the following proposition in exactly the same
way as Theorem 5.8 follows from Proposition 5.14.

Proposition 5.16. Let v ∈ V A be an orbifold type vertex and x, x1, . . . , xk ∈ Tv . For each
finite S ⊂ Av and ε > 0, there exist elements γ1, . . . , γk ∈ Av and an automorphism
σ ∈ Aut(Av) such that the following hold.

(1) for each g ∈ S,
d(x, σ(g)x) < ε. (5.6)

(2) σ(g) = γigγ−1
i for 1 ≤ i ≤ k and g ∈ stab xi .

(3) d(x, γi xi) < ε (i = 1, . . . , k).

We can moreover assume that γi = γj if xi = xj and that γi xi = xi if xi = x.

The remainder of this section is decicated to the proof of Proposition 5.16. The
argument in this case is essentially due to Rips and Sela [35] who give a proof of
Proposition 5.16 in the case where the action of Av on Tv has trivial kernel. Thus we only
need to address the case where this kernel is non-trivial.

IfH is a family of subgroups of G then we will denote by AutH(G) the subgroup of
Aut(G) consisting of those automorphisms that act on each H ∈ H by conjugation with
an element of G.
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Lemma 5.17. Let G be a f.p. group, H := {H1, . . . ,Hk} a finite collection of cyclic,
malnormal subgroups of G. Suppose that G̃ is an extension of some finite group E by G,
i.e. that there is the short exact sequence

1 −→ E −→ G̃
π
−→ G −→ 1.

Put H̃ := {H̃i := π−1(Hi) | 1 ≤ i ≤ k}. Let S be the group of those automorphisms
σ ∈ AutH(G) that lift to Aut

H̃
(G̃), i.e. for which there exists σ̃ ∈ Aut

H̃
(G̃) such that

π ◦ σ̃ = σ ◦ π.
Then S has finite index in AutH(G).

Proof. The proof is in two steps.We first prove that the subgroup S1 of AutH(G) consisting
of automorphisms that lift to automorphisms of G̃ is of finite index in AutH(G). We then
show that S is a finite index subgroup of S1.

Assume that |AutH(G) : S1 | = ∞. Then there exists a sequence (αi) ⊂ Aut(G) of
automorphisms such that αiS1 , αjS1 for i , j. Let 〈SE | RE〉 be a presentation of E and〈

s1, . . . , sm
�� r1, . . . , rg

〉
be a finite presentation of G. Every automorphism αi of G gives rise to a (not unique)
presentation of G̃ as

Pi(G̃) =
〈
SE, s1, . . . , sm

�� RE, r1e1, . . . rheh, {sies−1
i = fi,e}

〉
,

where the ei and fi,e lie in E and the generators si correspond to chosen lifts of the images
of the generators of G under αi . Since there are only finitely many such presentations,
there are i, j ∈ N s.t. i , j and Pi(G̃) = Pj(G̃). It follows that α−1

i αj ∈ S1 and therefore
αiS1 = αjS1, contradicting the above assumption. Thus |AutH(G) : S1 | < ∞.

Let now S2 be the subgroup of Aut(G̃) consisting of all lifts of automorphisms of S1.
It clearly suffices to show that S2 ∩ Aut

H̃
(G̃) is of finite index in S2.

For any α̃ ∈ S2 and i = 1, . . . , k we have α(H̃i) = ciH̃ic−1
i for some ci ∈ G̃ (but

the conjugation is not pointwise in general). Since Hi is malnormal, ci is unique up to
elements of H̃i . It follows that α induces a well-defined outer automorphism σi(α) of H̃i

represented by the automorphism

g 7→ c−1
i α(g)ci for all g ∈ H̃i .

Now S2 ∩ Aut
H̃
(G̃) is the kernel of the homomorphism

S2 →

k∏
i=1

Out(H̃i), α 7→ (σ1(α), . . . , σk(α)).

This clearly proves the assertion as Out(Hi) is finite for all i. �

We can now proceed with the proof of Proposition 5.16.
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Proof of Proposition 5.16. Denote by E the kernel of the action of Av on Tv . Since Tv

is not a line, E stabilizes a tripod, and therefore is finite by Theorem 2.17. Denote by
π : Av → P := Av/E the quotient map. Then P acts faithfully on Tv , and by Theorem 3.4,
P is the fundamental group of a compact 2-orbifold Σ with boundary. In particular, P is
finitely presented.

Now let x be an arbitrary point of Tv . Applying Proposition 5.2 of [35], we get an
infinite sequence (αi) of automorphisms of P satisfying the following.

• For each g ∈ S, limi→∞ d(x, αi(π(g))x) = 0.

• For each (infinite cyclic) peripheral subgroup Z of P the restriction αi |Z is
conjugation with an element c(e)i ∈ P.

• For any peripheral subgroup Z of P the distance between x and the (unique) fixed
point of αi(Z) tends to 0.

Let F ⊂ E A be the set of edges whose initial vertex is v. For each e ∈ F, the image Ze

of αe(Ae) under π in P = π(Av) = π1(Σ) correspond to a loop in Σ that is homotopic to a
boundary component. This implies that π(αe(Ae)) is malnormal in P.

Define S ≤ AutH(P) as in Lemma 5.17 with respect to the collection of subgroups
H := {Ze | e ∈ F} of P and H̃ := {Z̃e := π−1(Ze) | e ∈ F}.

Then by Lemma 5.17, |AutH(P) : S | < ∞. It follows that there is a subsequence
(αi j ) ⊂ (αi) such that all αi j are in the same left coset C of S. Fix a representative γ ∈ C.
Then the sequence (α′i ) given by

α′j := γ−1αi j

is in S and limi→∞ |α
′
i | = 0. Choosing i large enough and extending α′i to Av , gives the

desired automorphism. �

5.2.3. Simplicial components

Assume now that G has a nondegenerate simplicial vertex tree. Thus G can be refined in a
simplicial type vertex yielding a (refined) graph of actions with non-zero length function l
such that all vertices that are adjacent to edges of non-zero length have degenerate vertex
trees. We denote this graph of actions again by G. We can still assume that the base point
x0 is contained in a vertex tree ṽ0 = n1o, i.e. that x0 = [x̄0, ṽ0]. Indeed, if x0 is contained
in the interior of an edge segment Tẽ, we can split the corresponding edge ↓ẽ ∈ E A by
introducing a valence 2 vertex with vertex group A↓ẽ and degenerate vertex tree such that
x0 is precisely a lift of this vertex tree.
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We will construct a Dehn twist automorphism on an edge with non-zero length such
that powers of this Dehn twist shorten the action of G on X induced by ϕi (for large
enough i). Other than in the axial and orbifold cases these automorphisms do not shorten
the action on the limit tree.

The following proposition is the key observation needed for the construction of the
shortening automorphisms. In the following di := dX

|ϕi |
is the scaled metric on the Cayley

graph X . Thus
lim
i→∞

di(ϕi(g), ϕi(h)) = dϕ(g, h)

for all g, h ∈ G. Recall that (X, di) is δi-hyperbolic with lim δi = 0. Also recall from (3.2)
that for any c ∈ Ae and lift ẽ of e the element θẽ(c) is a natural lift of c to the stabilizer
of ẽ.

Proposition 5.18. Let e ∈ E A be an edge with positive length and c ∈ Z(Ae) of infinite
order. There exists a sequence (mi) ⊂ Z such that for any lift ẽ of eε , ε ∈ {−1, 1}, the
following holds.

If (yi), (zi) ⊂ X are approximating sequences of Tα(ẽ) and Tω(ẽ) (which are single
points) respectively, then

lim
i→∞

di(yi, ϕi(θẽ(c)ε ·mi )zi) = 0. (5.7)

Proof. We assume that ε = 1, the case where ε = −1 is an immediate consequence due
to the equivariance of the action. Fix some lift ẽ of e and put cẽ := θẽ(c). For large i
the element ϕi(cẽ) is hyperbolic and we define Ai to be the axis of ϕi(cẽ) in X , i.e. the
union of all geodesics joining the ends fixed by ϕi(cẽ). Ai is easily seen to be in the
4δi-neighbourhood of any of these geodesics with respect to the metric di .

For each i let y′i and z′i be points on Ai closest to yi and zi respectively. It is clear that
limi→∞ di(yi, y′i ) = 0 and limi→∞ di(zi, z′i ) = 0 as cẽ fixes Tṽ1 and Tṽ2 in the limit action.

Moreover, there are integers mi such that

d(y′i, ϕi(cẽ))
mi z′i ) ≤ l(ϕi(cẽ)) + 8δ

where l(ϕi(cẽ)) denotes the translation length of ϕi(cẽ) (note that we used the non-scaled
metric d here).

As d(y′i, ϕi(cẽ))
mi z′i ) is globally bounded from above, it follows that

lim
i→∞

di(y′i, ϕi(cẽ)
mi z′i ) = 0

and therefore also limi→∞ di(yi, ϕi(cẽ)mi zi) = 0.
To conclude, it suffices to show that the choice of the mi does not depend on the choice

of the lift of e. Indeed this follows immediately from the fact that if ẽ′ = hẽ is another
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Ai

zi

z′i

y′i

yi
ϕi(cẽ)

mizi

ϕi(cẽ)
miz′i

Figure 5.3.

lift of e then (ϕi(h)yi), (ϕi(h)zi) ⊂ X are approximating sequences of Tα(ẽ′) = hTα(ẽ) and
Tω(ẽ′) = hTω(ẽ) respectively, and cẽ′ = hcẽh−1. �

From now on let e ∈ E A be a fixed edge with positive length. Let c ∈ Z(Ae) be
of infinite order; the existence of such a c follows immediately from Lemma 2.22(2)
as edge groups of edges with positive length are finite-by-Abelian. Let (mi)i∈N as in
Proposition 5.18. Define σ : G → G to be the Dehn twist automorphism along e by
ωe(c); it is easily verified that σ is given by

[a0, e1, a1, . . . , en, an] 7→ [ā0, e1, ā1, . . . , en, ān] (5.8)

where

āk =


ωek (c

−1)ak ek = e,

ωek (c)ak ek = e−1

ak ek , e±1.

Proposition 5.19. Let g = [q] ∈ G. If q is reduced and contains an edge e±1, then

di(1, ϕi ◦ σmi (g)) < di(1, ϕi(g))

for sufficiently large i. Otherwise, di(1, ϕi ◦ σmi (g)) = di(1, ϕi(g)).

As the tree TG is minimal it follows that for any generating set S of G the normal form
of at least one element of S contains an edge e±1. Thus we obtain the following immediate
corollary.

Corollary 5.20. |ϕi ◦ σmi | < |ϕi | for sufficiently large i.

Proof of Proposition 5.19. Let q = a0, e1, a1, e2, . . . , an be a normal form A-path s.th.
g = [q], and ẽ1, . . . , ẽn be the reduced edge path in Ã from ṽ0 to gṽ0. Then

dG(x0, gx0) = dṽ0 (x̄0, pαẽ1
) +

n−1∑
k=1

dω(ẽk )(p
ω
ẽk
, pαẽk+1

) +

n∑
k=1

dẽk (p
α
ẽk
, pωẽk )

+ dgṽ0 (p
ω
ẽn
, g x̄0).
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x0 pωẽ1

gx0pωẽ2
pαẽ1 pωẽ3

pαẽ2

pαẽ3

Figure 5.4. The segment [x0, gx0] ⊂ T with g = [a0, e1, . . . , e3, a3]

Now for each k, let (pα
k,i
)i∈N and (pω

k,i
)i∈N be approximating sequences of pα

ẽk
and

pω
ẽk

respectively. Recall that (1) and (ϕi(g)) are approximating sequences of x0 and gx0
respectively. Thus by Lemma 2.10, for any ε > 0 and large enough i, we have

dX (1, ϕi(g)) ≥ di(1, pα1,i) +
n−1∑
k=1

di(pωk,i, pαk+1,i)

+

n∑
k=1

di(pαk,i, pωk,i) + di(pωn,i, ϕi(g)) − ε . (5.9)

1 pω1,i

ϕi(g)pω2,i
pα1,i pω3,i

pα2,i

pα3,i

Figure 5.5. The segment [1, ϕi(g)] ⊂ X with g = [a0, e1, . . . , e3, a3]

For each i ∈ N we put āi0 := a0 and for k ∈ {1, . . . , n} put

āik =


ωek (c

−mi )ak if ek = e

ωek (c
mi )ak if ek = e−1

ak if ek , e±1.

Moreover for 0 ≤ k ≤ n and i ∈ N we define

qk := a0, e1, a1, . . . , ak ,

q̄i
k := āi0, e1, āi1, . . . , ā

i
k .
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This implies that

[q̄i
n] = [ā

i
0, e1, āi1, . . . , en, ā

i
n] = σ

mi (g).

Further, for each k and i, put

p̄αk,i := ϕi([q̄i
k−1q−1

k−1])p
α
k,i

and
p̄ωk,i := ϕi([q̄i

kq−1
k ])p

ω
k,i .

Note that

ϕi([q̄i
nq−1

n ]) · ϕi(g) = ϕi(σ
mi (g) · g−1) · ϕi(g) = ϕi ◦ σ

mi

i (g).

Using the triangle inequality, this implies that for large i we get

di(1, ϕi ◦ σmi (g)) ≤ di(1, p̄α1,i) +
n−1∑
k=1

di(p̄ωk,i, p̄αk+1,i) +

n∑
k=1

di(p̄αk,i, p̄ωk,i)

+ di(p̄ωn,i, ϕi ◦ σ
mi (g)) + ε .

1 ϕ ◦ σmi(g)

p̄α2,i p̄α3,i p̄ω3,i

p̄ω1,i
p̄α1,i p̄ω2,i

Figure 5.6. The segment [1, ϕi ◦ σmi (g)] ⊂ X with g = [a0, e1, . . . , ee, a3]

The G-equivariance of the metric di immediately implies

(1) di(1, pα1,i) = di(1, p̄α1,i),

(2) di(pωn,i, ϕi(g)) = di(p̄ωn,i, ϕi ◦ σ
mi (g)),

(3) di(p̄ωk,i, p̄α
k+1,i) = di(pωk,i, pα

k+1,i) for any k,

(4) di(p̄αk,i, p̄ω
k,i
) = di(pαk,i, pω

k,i
) whenever ↓ẽk , e±1.

Assume that for some k, ↓ẽk = eε with ε ∈ {−1, 1}. Then θẽk (c) can be written as

θẽ(c) = a0, e1, . . . , ak−1, ek, ωek (c), e
−1
k , a

−1
k−1, . . . , e

−1
1 , a−1

0 ,
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and it is easy to verify that q̄i
k
q−1
k
∼ q̄i

k−1q−1
k−1θẽk (c)

ε ·mi . Therefore by Proposition 5.18

lim
i→∞

di(p̄αk,i, p̄ωk,i) = lim
i→∞

di(ϕi([q̄i
k−1q−1

k−1])p
α
k,i, ϕi([q̄

i
kq−1

k ])p
ω
k,i)

= lim
i→∞

di(ϕi([q̄i
k−1q−1

k−1])p
α
k,i, ϕi(q̄

i
k−1q−1

k−1θẽk (c)
ε ·mi )pωk,i)

= lim
i→∞

di(pαk,i, ϕi(θẽk (c)
ε ·mi )pωk,i)

= 0

Comparing this to (5.9) we obtain

lim
i→∞
(di(1, ϕi ◦ σmi (g))) = d(x0, gx0) − s · l(e). �

5.2.4. The shortening automorphism

In view of the previous sections, we are now able to conclude the proof of Proposition 5.6.
Let (ϕi) ⊂ Hom(G, Γ) a converging stable sequence of pairwise distinct homomorphisms
with associated Γ-limit map ϕ. Assume that all ϕi are short (with respect to fixed finite
generating sets of G and Γ). Then, by Theorems 2.6 and 2.11 we obtain a non-trivial limit
G-tree T , which splits as a graph of actions G by Theorem 3.4.

If G contains an axial vertex space or an orbifold type vertex space it follows
from Theorem 5.8, respectively Theorem 5.15, that we can shorten the action on T by
precomposing with an automorphism α ∈ Aut(G). As this action is being approximated
by the action on X via the ϕi it follows that for large i these actions can be shortened
likewise by precomposing with α. This proves that for large i the ϕi are not short, which
is the claim of the theorem.

In the remaining case G contains a simplicial vertex space and the Proposition follows
immediately from Corollary 5.20.

6. Makanin–Razborov diagrams

In this chapter we use the existence of Γ-factor sets proven in the previous chapter to give
a complete description of the set of all homomorphisms from a finitely generated group
G to an equationally Noetherian hyperbolic group Γ. In Section 7.2 we will see that this
assumption was vacuous as all hyperbolic groups are equationally Noetherian.

6.1. Equationally Noetherian groups

Let Γ be a group and F(x1, . . . , xn) be a free group of rank n. We then define

Γ[x1, . . . , xn] := Γ ∗ F(x1, . . . , xn).
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For any η ∈ Γ[x1, . . . , xn] and (γ1, . . . , γn) ∈ Γ
n we define η(γ1, . . . , γn) to be the

element of Γ obtained from η by substituting any occurence of xi by γi . We say that
(γ1, . . . , γn) satisfies the equation η if η(γ1, . . . , γn) = 1.

For any set S ⊂ Γ[x1, . . . , xn] the variety of S is defined as

rad(S) := {(γ1, . . . , γn) ∈ Γ
n | η(γ1, . . . , γn) = 1 for all η ∈ S},

thus rad(S) is the set of all n-tuples of elements of Γ that satisfy all equations of S
simultaneously.
Γ is called equationally Noetherian if for every n ∈ N and any subset S ⊂ Γ[x1, . . . , xn]

there exists a finite subset S0 ⊂ S such that rad(S) = rad(S0).
It was shown by Guba [20] that f.g. free groups are equationally Noetherian. His proof

exploited the fact that free groups are linear which allows him to appeal to some classical
algebraic geometry. This fact was used in [2] to show that large classes of linear groups
are equationally Noetherian. Note however that hyperbolic groups are not necessarily
linear [25]. Thus we can in general not appeal to linearity to establish that hyperbolic
groups are equationally Noetherian.

The following simple fact was pointed out to the authors by Abderezak Ould Houcine,
it says that to check whether a finitely generated group Γ is quationally Noetherian it
suffices to check systems of equations without constants:

Lemma 6.1. Let Γ be a finitely generated group. Suppose that for any n ∈ N and any
subset S ⊂ F(x1, . . . , xn) ⊂ Γ[x1, . . . , xn] there eixsts a finite subset S0 ⊂ S such that
rad(S) = rad(S0). Then Γ is equationally Noetherian.

Proof. Let Γ = 〈g1, . . . , gk〉 and S ⊂ Γ[x1, . . . , xn]. Consider the epimorphism

β : F(y1, . . . , yk, x1, . . . , xn) → Γ[x1, . . . , xn]

given by β(yi) = gi for 1 ≤ i ≤ k and β(xi) = xi for 1 ≤ i ≤ n. Put S̃ = β−1(S). By
hypothesis there exists a finite set S̃0 ⊂ S̃ such that rad(S̃) = rad(S̃0). Clearly S0 := β(S̃0)

is a finite subset of S, as further rad(S) = rad(S0) this implies the claim. �

Lemma 6.2. If Γ is equationally Noetherian then for any sequence

G1 → G2 → G3 → · · ·

of epimorphisms of finitely generated groups the associated embeddings

Hom(G1, Γ) ← Hom(G2, Γ) ← Hom(G3, Γ) ← · · ·

eventually become bijections.

Proof. Given a finitely generated group G = 〈x1, . . . , xn | R〉 and a group Γ there is a
one-to-one correspondence between Hom(G, Γ) and rad(R). Indeed if φ ∈ Hom(G, Γ) then
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(φ(x1), . . . , φ(xn)) ∈ rad(R) and for each tuple (γ1, . . . , γn) ∈ rad(R) the map xi 7→ γi for
i = 1, . . . , n extends to a homomorphism G→ Γ.

Choose presentations 〈x1, . . . , xn | Ri〉 of Gi such that Ri ⊂ Ri+1. Put

R∞ =
⋃
i∈N

Ri

and G∞ := 〈x1, . . . , xn | R∞〉, i.e. G∞ is the direct limit of the Gi . As Γ is equationally
Noetherian it follows that rad(R∞) = rad(Ri) for some i. The claim follows. �

Corollary 6.3. If Γ is equationally Noetherian then any sequence

G1 → G2 → G3 → · · ·

of epimorphisms of finitely generated groups that are residually Γ eventually stabilizes.

Proof. Because of Lemma 6.2 it suffices to show that if two groups G and G′ are residually
Γ and π : G→ G′ is a non-injective epimorphism then π∗ : Hom(G′, Γ) → Hom(G, Γ) is
not surjective. This is obvious as for k ∈ ker π \ {1} there is a homomorphism φ : G→ Γ

such that φ(k) , 1 as G is residually Γ. Clearly φ does not lie in the image of π∗. �

Corollary 6.4. Suppose that Γ is equationally Noetherian. Then any Γ-limit group is
fully residually Γ.

Proof. Let L = Fk/ker
−→
(ϕi) be a Γ-limit group. Choose a sequence

G0 = Fk → G1 → G2 → · · ·

of finitely presented groups such that L is their direct limit. By Corollary 6.3 there exists
some Gi0 such that any homomorphism ϕ : Gi0 → Γ factors through L. After passing to
a subsequence we can further assume that any ϕi factors through Gi0 as Gi0 is finitely
presented. Thus the sequence factors in fact through L, i.e. there exists a stable sequence
(ηi) ⊂ Hom(L, Γ) such that ker

−→
(ηi) = 1, i.e. that L = L/ker

−→
(ηi). This clearly implies that

for any finite set M ⊂ L, ηi |M is injective for sufficiently large i. �

We will need the following simple lemma, its proof is identical to that in the case of a
free group, see [6].

Lemma 6.5. Let Γ be an equationally Noetherian group and G be a finitely generated
group. Then there exist finitely many groups L1, . . . , Lk and epimorphisms qi : G→ Li

such that the following hold.

(1) Li is fully residually Γ for i = 1, . . . , k.

(2) For any homomorphism φ : G→ Γ there exists i ∈ {1, . . . , k} such that φ factors
through qi .
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Proof. Let Ĝ be the universal residually Γ quotient of G, i.e. Ĝ = G/N where N is the
intersection of all kernels of homomorphisms from G to Γ. Clearly any homomorphism
φ : G → Γ factors through the canoncial projection π : G → Ĝ = G/N . It therefore
suffices to show that there exists a finite collection of groups L1, . . . , Lk that are fully
residually Γ and epimorphisms q̂i : Ĝ→ Li for 1 ≤ i ≤ k such that any homomorphism
φ̂ : Ĝ→ Γ factors through some q̂i .

If Ĝ is fully residually Γ then the claim is trivial. Thus we can assume that Ĝ is not
fully residually Γ. It follows that there exists a finite set M = {g1, . . . , gk} ⊂ Ĝ \ {1} such
that ker φ ∩ M , ∅ for any homomorphism φ̂ : Ĝ → Γ. It follows that any φ̂ : Ĝ → Γ

factors through one of the epimorphisms qi : Ĝ→ Li where Li is the universal residually
Γ quotient of Ĝ/〈〈gi〉〉 for 1 ≤ i ≤ k and qi is the canonical quotient map.

If Li is not fully residually Γ we repeat this construction for Li , after finitely many
iterations this must teminate by Lemma 6.2. Thus we get a finite directed tree of
epimorphisms such that any homomorphism factors through one branch, the assertion
follows by choosing as epimorphisms the compositions of epimorphisms along maximal
(directed) branches of this tree. �

6.2. Dunwoody decompositions

Recall that a group G is called accessible if there exists a reduced graph of groups A such
that the following hold.

(1) π1(A) � G.

(2) Any edge group of A is finite.

(3) Any vertex group of A is one-ended or finite.

We call any such A a Dunwoody decompositon of G. Note that the graph of groups A
is far from being unique for a given accessible group G. However the maximal vertex
groups are unique up to conjugacy; indeed they are precisely the maximal one-ended
subgroups of G.

It is the Dunwoody accessibility theorem [12] that states that all finitely presented
groups are accessible. It turns out that f.g. groups are in general not accessible but the
particular case that we will need is covered by the following theorem of P. Linnell [30] of
which Theorem 4.5 is a generalization.

Theorem 6.6. Let G be a f.g. group. Suppose that there exists some constant C such that
any finite subgroup H of G if of order at most C. Then G is accessible.
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Let now Γ be a hyperbolic group and L a Γ-limit group. As the order of finite subgroups
of L is bounded by N(Γ) it follows that Theorem 6.6 applies to L, i.e. L admits a Dunwoody
decomposition D. As modular automorphisms of the vertex groups of D restrict to the
identiy on all finite subgroups it follows that they extend to automorphisms of L.

In the following we call the subgroup of Aut L consisting of those automorphisms
that restrict (up to conjugation) to modular automorphism of the vertex groups of D the
modular group of L and denote it by Mod(L). In the case of a one-ended group this
recovers our original definition.

Let now G be an accessible group and Γ be a group. Then we call a homomorphism
ψ : G→ Γ locally injective if ψ is injective when restriced to the vertex groups of some
(and therefore all) Dunwoody decomposition of G. Note that this is equivalent to saying
that ψ is injective when restricted to 1-ended and finite subgroups of G.

6.3. MR-diagrams for equationally Noetherian hyperbolic groups

In this section we give a proof of the main theorem of this article, i.e. the description of
Hom(G, Γ) for some finitely generated group G and some hyperbolic group Γ under the
additional assumption that Γ is equationally Noetherian. It will then be the purpose of
Section 7 to establish that all hyperbolic groups have this property.

Theorem 6.7. Let Γ be an equationally Noetherian hyperbolic group and G be a finitely
generated group. Then there exists a finite directed rooted tree T with root v0 satisfying

(1) The vertex v0 is labeled by G.

(2) Any vertex v ∈ VT , v , v0, is labeled by a Γ-limit group Gv .

(3) Any edge e ∈ ET is labeled by an epimorphism πe : Gα(e) → Gω(e)

such that for any homomorphism φ : G→ Γ there exists a directed path e1, . . . , ek from
v0 to some vertex ω(ek) such that

φ = ψ ◦ πek ◦ αk−1 ◦ · · · ◦ α1 ◦ πe1

where αi ∈ Mod Gω(ei ) for 1 ≤ i ≤ k and ψ is locally injective.

Remark 6.8. In case G is fully residually Γ, the factorization of homomorphisms from
G to Γ as in Theorem 6.7 requires modular automorphisms of G before the first proper
quotient map. Thus in this case the diagram has precisely one edge e satisfying α(e) = v0,
and πe : G = Gα(e) → Gω(e) is an isomorphism.

193



R. Weidmann & C. Reinfeldt

Proof of Theorem 6.7. In view of Lemma 6.5 and Corollary 6.3 it clearly suffices to show
that any group G that is fully residually Γ admits a finite set {qi : G → Γi} of proper
quotient maps such that any homomorphism ϕ : G → Γ which is not locally injective
factors through some qi after precomposition with an element of Mod G.

Choose a Dunwoody decomposition D of G. For each vertex group Dv there is a factor
set

Sv = {qv
i : Dv → Dv/N i

v}.

This follows from Theorem 5.2 if Dv is one-ended and is trivial if Dv is finite. For each v
and i let N̄ i

v be the normal closure of N i
v in G. We now define the factor set for G to be{

Qv
i : G→ G/N̄ i

v

�� v ∈ V D, qv
i ∈ Sv

}
.

To see that this is a factor set let ϕ : G → Γ be a non-locally injective homomorphism.
Choose v ∈ V D such that ϕ|Dv is non-injective. Thus there exists α ∈ Mod(Dv) such
that ϕ|Dv ◦ α : Dv → Γ factors through some qv

i . As α extends to an automorphism
α′ ∈ Mod(G) it follows that ϕ ◦ α′ factors through Qv

i . �

7. Shortening quotients and applications

In the previous section we have constructed Makanin–Razborov diagrams for equationally
Noetherian hyperbolic groups. It is the purpose of this last chapter to establish that
all hyperbolic groups are equationally Noetherian, i.e. that the construction of the
Makanin–Razborov diagrams applies to all hyperbolic groups.

7.1. Shortening quotients

In Section 5, see Remark 5.7, we have seen that if (ϕi) ⊂ Hom(G, Γ) is a stable sequence
such that ker

−→
(ϕi) = 1, i.e. that L = G/ker

−→
(ϕi) = G, then we can construct a proper

quotient G/ker
−→
(ϕ̂i) of G = L where the ϕ̂i are the shortened ϕi . This quotient is clearly

again a Γ-limit group and is called a shortening quotient.
This construction only works if G is fully residually Γ. It is the main purpose of this

section to construct shortening quotients for arbitrary Γ-limit groups. In the end, see
Corollary 7.6, it will turn out that all Γ-limit groups are fully residually Γ. We will first
treat one-ended Γ-limit groups and then deal with the general case.

Let L = G/ker
−→
(ϕi) be a one-ended Γ-limit group and A be an almost Abelian JSJ-

decomposition of L. Lemma 7.1 below guarantees that we can approximate L by a
sequence of groups (Wi) that are endowed with splittings that appoximate A.
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Lemma 7.1. Let G be a finitely presented group and L = G/ker
−→
(ϕi) be a one-ended

Γ-limit group with associated Γ-limit map ϕ : G → L. Let A be an almost Abelian
JSJ-decomposition of L, in particular L = π1(A, v0).

Then there exists a sequence of graphs of groups (Ai) with underlying graph A and
finitely presented fundamental groups Wi = π1(A

i, v0), surjective morphisms f i : Ai →

Ai+1 and hi : Ai → A and an epimorphism γ : G→ W0 such that the following hold.

(1) ϕ = h0
∗ ◦ γ : G→ L.

(2) hi = hi+1 ◦ f i for all i.

(3) L is the direct limit of the sequence Wi , i.e.

ker
−→
(ϕi) =

∞⋃
k=1

ker( f k∗ ◦ f k−1
∗ ◦ · · · ◦ f 1

∗ ◦ f 0
∗ ◦ γ).

(4) If Av is an orbifold type vertex group then ψhi

v : Ai
v → Av is an isomorphism for

all i.

(5) If Av is of axial type then ψhi

v : Ai
v → Av is injective for all i.

(6) The maps ψhi

e : Ai
e → Ae are injective for all i and e ∈ E A.

(7) For any v ∈ V A we have
⋃
ψhi
v (Ai

v) = Av .

(8) For any e ∈ E A we have
⋃
ψhi
e (Ai

e) = Ae.

Proof. This is a simple application of foldings as discussed in [4] and Dunwoody’s vertex
morphisms [13]. Let T = Ã be the Bass–Serre tree corresponding to A, thus T is an
L-tree. The Dunwoody Resolution Lemma guarantees that there is a G-tree Y with finitely
generated edge and vertex stabilizers and a surjective morphism (id, p) from Y to the
L-tree T , see [12, 14] or [4].

After applying finitely many folds to the G-tree Y we obtain a G-tree Y ′ such that the
induced map on the graphs of groups Y ′/G→ T/L = A is bijective on the level of graphs
and surjective for the edge and vertex groups of A that are finitely generated, see [4].

We now apply vertex morphisms to quotient out the kernels of the homomorphisms of
edge groups and of the vertex groups whose targets are QH-subgroups or almost Abelian
groups. This clearly adds only finitely many relations. Denote the resulting graph of
groups by A0, the morphism from A0 to A clearly satisfies (4)–(6).

We can now continue to apply folds of type IIA and IIB, see [4], and get a sequence
of graphs of groups satisfying (7) and (8). At each step we further add all relators to
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edge groups and vertex group mapped to almost Abelian vertex groups which makes this
sequence preserve properties (4)–(6). Finally we add at each step the shortest relator to
the vertex groups that are mapped to rigid vertex groups that does not yet hold. This then
implies that all relations of L will hold eventually, i.e. that (3) holds. Parts (1) and (2)
hold by construction. �

Let now G be finitely presented with fixed finite generating set S, (ϕi) ⊂ Hom(G, Γ)
a stable sequence such that L = G/ker

−→
(ϕi) is a one-ended Γ-limit group. Let A be an

almost Abelian JSJ-decomposition of L. Choose sequences (Ai), (hi) and ( f i), (Wi) and
γ as in Lemma 7.1.

Let
ξk := f k−1

∗ ◦ · · · ◦ f 1
∗ ◦ f 0

∗ ◦ γ : G→ Wk

be the epimorphism induced by the f i and γ. Then Si := ξi(S) is a generating set of Wi .
After replacing (ϕi) by a subsequence we can assume that ϕi factors through ξi for all i,
i.e. that

ϕi = λi ◦ ξi

for some λi : Wi → Γ. This is clearly possible as the finitely many defining relations of
Wi lie in ker

−→
(ϕi) and therefore in the kernel of ϕj for sufficiently large j.

Let now λ̂i : Wi → Γ be the homomorphism obtained from shortening λi by precom-
position with elements of ModAi (Wi) and postcomposition with an inner automorphism.
Here shortness is measured with respect to the generating set Si . We then put ηi := λ̂i ◦ ξi .
After passing to a subsequence we can assume that (ηi) is stable. We then put

Q := G/ker
−→
(ηi)

and call Q a shortening quotient of L. It is clear from the construction that Q is a quotient
of L. Indeed if g ∈ ker

−→
(ϕi) then g ∈ ker ξi for large i as we assume that (3) of Lemma 7.1

is satisfied. Thus g ∈ ker ηi = ker λ̂i ◦ ξi for large i and therefore g ∈ ker
−→
(ηi). We denote

the projection from L to Q by π, thus we have η = π ◦ ϕ if η and ϕ are the Γ-limit maps
associated to the sequences (ηi) and (ϕi).

Proposition 7.2. Let L = G/ker
−→
(ϕi) and Q = G/ker

−→
(ηi) be as above and A be an almost

Abelian JSJ-decomposition of L. Then the following hold.

(1) The epimorphism π : L → Q is injective on rigid vertex groups of A.

(2) If (ηi) is not contained in finitely many conjugacy classes then Q is a proper
quotient of L.
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(3) If all almost Abelian subgroups of Q are finitely generated then the following
hold:

(a) If a subsequence of (ηi) factors through η : G→ Q then a subsequence of
(ϕi) factors through ϕ : G→ L.

(b) All almost Abelian subgroups of L are finitely generated.

Proof. (1). Let g ∈ L be an element that is conjugate to an element h of a rigid vertex
group Av of A such that π(g) = 1. We need to show that g = 1.

As we assume that (7) of Lemma 7.1 is satisfied it follows that for some i0 there exists
gi0 ∈ Wi0 that is conjugate to some ki0 ∈ Ai0

v such that hi0∗ (gi0 ) = g. Choose g̃ ∈ G such
that ξi0 (g̃) = gi0 and put gi = ξi(g̃) for all i. Note that for i ≥ i0 the element gi is conjugate
to some element ki ∈ Ai

v .
Now π(g) = 1 means that ηi(g̃) = λ̂i ◦ ξi(g̃) = λ̂i(gi) = 1 for large i, in particular

any element conjugate to gi lies in the kernel of λ̂i . Recall that λ̂i = λi ◦ αi for some
modular automorphism αi of Wi . As gi is conjugate to the element ki ∈ Ai

v and as
modular automorphisms act on rigid groups by conjugation it follows that αi(gi) is also
conjugate to ki and therefore conjugate to gi . Thus λ̂i ◦ αi(gi) = λi(gi) = 1. This implies
that ϕi(g̃) = λi ◦ ξi(g̃) = λi(gi) = 1 for large i, it follows that g̃ ∈ ker

−→
(ϕi). Thus g = 1.

(2). Assume to the contrary that (ηi) contains infinitely many conjugacy classes and that
L = Q, i.e. that L = Q = G/ker

−→
(ηi). After passing to a subsequence we can assume that

(ηi) converges to an action (T, x, ρ) of L on an R-tree T satisfying the assumptions of
Theorem 3.4. Let now G be the graph of actions decomposition corresponding to this
action. As in Section 5 we distinguish 3 different cases.

If the graph of actions has an orbifold type vertex then there is an automorphism of its
vertex group that extends to a modular automorphism α of L which shortens the action of
L on T , i.e. for which |ρ ◦ α |x ≤ |ρ|x . Recall that η = hk

∗ ◦ ξk for all k. Now this orbifold
type vertex group corresponds to a suborbifold of one of the orbifold type vertices of
the JSJ-decomposition of L. Thus α can be lifted to any Wi as the morphisms hi are
isomorphisms when restricted to QH-subgroups. Thus there exists αi ∈ Mod Wi such that
α ◦ hi∗ = hi∗ ◦ αi . If follows that

|hi∗ ◦ αi ◦ ξi |x < |ρ ◦ α |x < |ρ|x

and therefore |λ̂i ◦ αi ◦ ξi | < |λ̂i ◦ ξi | = |ηi |, contradicting the shortness of the λ̂i .
If the action has an axial type vertex then we can choose α as in the case of an

orbifold type vertex but the lifting is slightly more subtle. Note first that the vertex group
corresponding to this axial vertex space is also a vertex group of the JSJ-decomposition of
L. This is true as the group must be elliptic in the JSJ as it is an almost Abelian subgroup
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that is not 2-ended. We can assume that it is a vertex group as we could otherwise refine
the JSJ contradicting its maximality.

Now the morphisms ψhi
v : Ai

v → Av are not necessarily surjective on almost Abelian
vertex groups. However for large i the group ψhi

v (Ai
v) ≤ Av contains all generators, and

therefore all elements, of Av that act non-trivially on the axial tree. This means we can
define an automorphism of Ai

v that extends to an automorphism αi of Wi such that λ̂i ◦ αi
is shorter than λ̂i by analyzing the action of Ai

v on the axial tree via ψhi
v . Note that this is

easier than in Section 5 as the group Ai
v is finitely generated.

In the simplicial case the edge group along which the Dehn twist is performed either
corresponds to an edge group of the JSJ or to a simple closed curve in a QH-subgroup
of the JSJ. In both cases we can simply lift the Dehn twists to Wi and thereby shorten
the homomorphism ηi . In the case where the edge group corresponds to a simple closed
curve of a QH-subgroup this is obvious, in the other case it follows as an element that is
central in the edge group of the graph of actions is also central in the corresponding edge
group of Ai .

(3). Note first that any edge group of A, the JSJ-decomposition of L, is contained in
either a rigid or an orbifold type vertex group. It follows that all edge groups of A are
finitely generated. Indeed if the edge group is contained in a rigid vertex group then it
follows from (1) that the edge group embeds into Q and is therefore finitely generated.
Otherwise the edge group is virtually cyclic and the modular automorphisms act on the
group by conjugation, it therefore follows as in the proof of (1) that it is embedded into Q
and is therefore finitely generated.

As L = π1(A) is finitely generated and all edge groups of A are finitely generated it
follows that also all vertex groups of A are finitely generated. Thus there exist i0 such that
for i ≥ i0 the morphism hi is bijective on all edge groups and non-rigid vertex groups.
On the rigid vertex groups hi is surjective, i.e. the morphism consists just of vertex
morphisms in the sense of Dunwoody [13]. As almost all ξi factor through Wi0 we can
pass to a subsequence and assume that i0 = 0.

Suppose now that ηi factors through Q. For any v ∈ V A denote the kernel of the map
ψh0
v : A0

v → Av by Kv . As ηi factors through Q and therefore through L it follows that
Kv ⊂ ker ηi for any vertex group Av . As the ηi and the ϕi only differ by precomposition
with an automorphism that acts by conjugation on rigid vertex groups this implies that
Kv ⊂ ker ϕi for all rigid vertex groups Av . Thus ϕi factors through L as all other relations
of L already hold in W0. The second assertion follows immediately from the proof. �

The above construction only works for one-ended Γ-limit groups as we need the
existence of an almost Abelian JSJ-decomposition. In the remainder of this section we
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will show that the concept of a shortening quotient generalizes naturally to all Γ-limit
groups.

Let now G be a finitely presented group and (ϕi) ⊂ Hom(G, Γ) be a stable sequence.
Put L := G/ker

−→
(ϕi) and denote the associated Γ-limit map by ϕ. Let D be a Dunwoody

decomposition of L, i.e. L = π1(D, v0), all edge groups of D are finite and no vertex group
splits over finite groups. Thus every vertex group is either finite or one-ended.

As in the proof of Lemma 7.1 we see that there is a graph of groups D′ whose
underlying graph D is the same graph that is underlying D, a morphism f : D′→ D and
an epimorphism γ : G→ π1(D

′, v0) such that the following hold.

(1) ϕ = f∗ ◦ γ.

(2) π1(D
′, v0) is finitely presented.

(3) The morphism f is bijective on edge groups, thus f only consists of a collection
of vertex morphisms on some vertices.

Now as π1(D
′, v0) is finitely presented almost all ϕi factor through γ. Thus after

omitting finitely many elements from (ϕi) we can assume that for all i there exists
ϕ̄i : π1(D

′, v0) → L such that ϕi = ϕ̄i ◦ γ.
For each vertex v ∈ V D we get a stable sequence (ϕ̄vi ) where ϕ̄

v
i : D′v → Γ is the

restriction of ϕ̄i to D′v . Note that this restriction is only unique up to inner automorphisms
of Γ unless we choose a preferred conjugate of D′v in π1(D

′, v0). Independently of
these conjugacy factors the obtained sequence is stable for all v ∈ V D and we have
Dv = D′v/ker

−→
(ϕ̄vi ).

Now for every one-ended Dv we can apply the construction of the shortening quotient
to the sequence (ϕ̄vi ) and obtain (after passing to a subsequence) a new stable sequence
(η̄vi ) ⊂ Hom(D′v, Γ) such that ker

−→
(ϕ̄vi ) ≤ ker

−→
(η̄vi ) and that all conclusions of Proposition 7.2

hold for the quotient map

πv : Dv = D′v/ker
−→
(ϕ̄vi ) → Qv := D′v/ker

−→
(η̄vi ).

If Dv is finite we put η̄vi = ϕ̄
v
i for all i.

Now as the shortening automorphisms act on finite subgroups by conjugation it follows
that for each i there exists a (not unique) homomorphism η̄i : π1(D

′, v0) → Γ such that
the restriction of η̄i to D′v is conjugate to η̄vi for all v ∈ V D.

We put ηi = η̄i ◦ γ : G→ Γ. After passing to a subsequence we can assume that (ηi) is
stable and we put Q := G/ker

−→
(ηi). As ker

−→
(ϕi) ≤ ker

−→
(ηi) by construction we have a natural

epimorphism π : L → Q. As in the one-ended case it follows that η = π ◦ ϕ if η and ϕ
are the Γ-limit maps associated to the sequences (ηi) and (ϕi), respectively.
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It is clear that the epimorphism π maps the vertex groups Dv of D to subgroups of Q
that are isomorphic to their shortening quotients Qv , but we do not claim that the Qv are
vertex groups of the Dunwoody decomposition of Q.

Theorem 7.3. Let G be a finitely presented group and L = G/ker
−→
(ϕi) a Γ-limit group.

Let (ηi) be as above and Q = G/ker
−→
(ηi). Let π : L → Q be the natural quotient map.

Then one of the following holds.

(1) ker π , 1.

(2) A subsequence of (ηi) factors through η and all almost Abelian subgroups of Q
are finitely generated.

If moreover all almost Abelian subgroups of Q are finitely generated then the following
hold.

(a) If a subsequence of (ηi) factors through η : G→ Q then a subsequence of (ϕi)
factors through ϕ : G→ L.

(b) Almost Abelian subgroups of L are finitely generated.

Proof. Wefirst prove (1).Assume that ker π = 1, i.e. that L = G/ker
−→
(ϕi) = G/ker

−→
(ηi) = Q.

Thus for each v ∈ V D, the epimorphism πv : Dv → Qv is an isomorphism, hence by
Proposition 7.2, (η̄vi ) contains only finitely many conjugacy classes. After passing to a
subsequence we can assume that for each v, all η̄vi are conjugate, i.e. that ker

−→
(η̄vi ) = ker η̄vi

for all i and all v ∈ V D, in particular Dv � Qv = G/ker
−→
(η̄vi ) � η̄vi (G) ≤ Γ. As almost

Abelian subgroups of hyperbolic groups are 2-ended it follows that all almost Abelian
subgroups of vertex groups of D and therefore of π1(D, v0) = L = Q are finitely generated.

We will now show that a subsequence of (ηi) factors through η = π ◦ ϕ where η is
the limit map associated to (ηi) = (η̄i ◦ γ). As all ηi fator through γ if follows that the
associated Γ-limit map η also factors through γ. Choose η̄ such that η = η̄◦γ. As ker π = 1
it follows that ker η = ker π ◦ ϕ = ker ϕ. Thus the kernel of η̄ is normally generated by
the stable kernels ker

−→
(η̄vi ). By the above remark there is a subsequence of (η̄i) for which

ker
−→
(η̄vi ) = ker η̄vi for all v ∈ V D and i, it follows that this subsequence factors through η.
Now suppose that all almost Abelian subgroups of Q are finitely generated. The

shortening quotient Qv of Dv embeds into Q for all v, thus all almost Abelian subgroups
of Qv are finitely generated. It thus follows from Proposition 7.2 that all almost Abelian
subgroups of Dv and therefore also L = π1(Dv) are finitely generated, this proves (b).
The proof of (a) is similar to the proof of the first part; it suffices to show for a subseqence
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of (ϕi) we have ker
−→
(ϕ̄vi ) ⊂ ker ϕ̄vi . By assumption a subsequence of (ηji ) of (ηi) factors

through η which implies that the sequences (η̄vji ) factor through D′v → Qv = D′v/ker
−→
(η̄vi )

for all v ∈ DV . As almost Abelian subgroups of Qv are finitely generated it follows from
Proposition 7.2 that a subsequence of (ϕ̄vi ) factors through D′v → Dv = D′v/ker

−→
(ϕ̄vi )

for all v ∈ V D, thus a subsequence of (ϕ̄i) factors π1(D
′, v0) → L = π1(D, v0), i.e. a

subsequence of (ϕi) = (ϕ̄i ◦ γ) factors through ϕ : G→ L. �

If L = G/ker
−→
(ϕi) and Q = G/ker

−→
(ηi) are as in Theorem 7.3 then we call Q a shortening

quotient of L and we say that (ηi) is obtained from (ϕi) by shortening or by the shortening
procedure. It will be important in the next section that η factors through ϕ if η and ϕ are
the Γ-limit maps corresponding to (ηi) and (ϕi).

7.2. Hyperbolic groups are equationally Noetherian

In this chapter we show that hyperbolic groups are equationally Noetherian. We fix a
hyperbolic group Γ. Crucial to the argument is a partial order on Γ-limit maps defined as
follows.

Definition 7.4. Let G be f.g. and ϕ : G→ Lϕ , η : G→ Lη be Γ-limit maps. We say that
η ≤ ϕ if η = π ◦ ϕ for some epimorphism π : Lϕ → Lη . We further say η < ϕ if η ≤ ϕ
and ϕ � η.

Fix a f.g. group G. By definition, every homomorphism η : G→ Γ is a Γ-limit map,
arising from the constant sequence (η). Note further that the relation ≤ on the set of all
Γ-limit maps from G is transitive. We will show that there are only finitely many maximal
Γ-limit maps with respect to ≤. The main technical step is the proof of the following
theorem.

Theorem 7.5. Let (ϕi) ⊂ Hom(G, Γ) be a stable sequence and ϕ : G → G/ker
−→
(ϕi) the

corresponding Γ-limit map. Then a subsequence of (ϕi) factors through ϕ.

As an immediate consequence of Theorem 7.5 we get the following.

Corollary 7.6. Finitely generated Γ-limit groups are fully residually Γ.

Proof. Let G be f.g., (ηi) ⊂ Hom(G, Γ) a stable sequence with stable limit map η :
G → L := G/ker

−→
(ηi). Let E = {g1, . . . , gk} ⊂ L, we need to show that there is a

homomorphism from L to Γ that maps E injectively.
Choose Ẽ = {g̃1, . . . , g̃k} ⊂ G such that η(g̃ j) = gj for j = 1, . . . , k. As η |Ẽ is

injective, there exists an i0 ∈ N such that for i ≥ i0, ηi |Ẽ is injective. Moreover, by
Theorem 7.5, there is an i ≥ i0 such that ηi = η̄i ◦ η for some η̄i ∈ Hom(L, Γ). Clearly,
η̄i |E is injective. �
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Theorem 7.5 is an immediate consequence of Lemma 7.7 and Lemma 7.8.

Lemma 7.7. Let (ϕi) ⊂ Hom(Fk, Γ) be a stable sequence and ϕ its associated Γ-limit
map. Then one of the following holds.

(1) There exists an infinite descending sequence of Γ-limit maps

ϕ > η1 > η2 > η3 > . . . .

(2) For infinitely many i, ϕi factors through ϕ.

Proof. Assume that (1) does not hold. Let (η1
i ) be a stable sequence obtained from (ϕi)

by shortening (and passing to a subsequence) and let η1 be the corresponding Γ-limit map.
If η1 < ϕ then we choose a sequence (η2

i ) with Γ-limit map η2 by shortening (η1
i ) and so

on. By assumption this process terminates, i.e. for some s we have ker ηs = ker ηs+1.
By Theorem 7.3(2) a subsequence of (η̄s+1

i ) factors through η
s+1 and all almost Abelian

subgroups of Lηs+1 are finitely generated. Applying Theorem 7.3(a) and (b) s + 1 times
implies that a subsequence of (ϕi) factors through ϕ, i.e. that (2) occurs. �

Lemma 7.8. There exists no infinite descending sequence of Γ-limit maps.

Proof. Assume that an infinite descending sequence of Γ-limit maps exists. For each
k ∈ N, choose a stable sequence (ηki ) ⊂ Hom(G, Γ) with associated Γ-limit map
ηk : G→ G/ker

−→
(ηki ) such that

(1) η1 > η2 > . . . is an infinite descending sequence of Γ-limit maps,

(2) for each n > 1, if η̄n is a Γ-limit map such that η̄n < ηn−1 and there is an infinite
descending sequence ηn−1 > η̄n > . . . of Γ-limit maps, then

|ker η̄n ∩ Bn | ≤ |ker ηn ∩ Bn |,

where Bn is the Ball of radius n in G around the identity with respect to some
fixed finite generating set.

It is clear that such a sequence exists, as the ηi can be chosen inductively to satisfy
property 2. For each n choose an index in such that

(3) ker ηnin ∩ Bn = ker ηn ∩ Bn,

(4) ker ηn+1 � ker ηnin .
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As ηn+1 < ηn, it is clear that these conditions are satisfied if in is chosen sufficiently large.
By construction, the diagonal sequence (ηnin )n∈N ⊂ Hom(G, Γ) is stable. Denote its

Γ-limit map by η∞, clearly η∞ < ηn for all n.
It suffices to show that η∞ does not allow an infinite descending sequence of Γ-limit

maps
η∞ > ϕ1 > ϕ2 > . . .

as it follows then from Lemma 7.7 that infinitely many ηnin factor through η∞, which
clearly contradicts condition 4 of the construction, as ker ηn+1 � ker ηnin implies that ηnin
does not factor through ηn+1 and therefore not through η∞.

So assume that an infinite descending sequence η∞ > ϕ1 > ϕ2 > . . . exists. Choose
an element g ∈ G with η∞(g) , 1, but ϕ1(g) = 1. Assume that |g | = n. Then

η1 > η2 > · · · > ηn−1 > ϕ1 > ϕ2 . . .

is an infinite descending sequence of Γ-limit maps and

|ker ϕ1 ∩ Bn | > |ker ηn ∩ Bn |,

in contradiction to condition (2). �

In [39] proved that torsion-free hyperbolic groups are Hopfian, essentially the same
argument works in our situtation; see also [19] for the case of torsion-free toral relatively
hyperbolic groups.

Corollary 7.9. Hyperbolic groups are Hopfian.

Proof. Let Γ be a hyperbolic group. We need to show that any epimorphism η : Γ→ Γ is
an isomorphism, i.e. has trivial kernel.

Note that ηn : Γ→ Γ (the nth power of η) is also an epimorphism. If η has non-trivial
kernel then ker ηn+1 < ker ηn for all n. Thus we have an infinite sequence

id > η > η2 > η3 > . . .

of Γ limit maps (recall that all homomorphisms to Γ are Γ-limit maps coming from the
constant sequence), a contradiction to Lemma 7.8. �

We can now establish the existence of maximal Γ-limit quotients.

Theorem 7.10. Let
η1 < η2 < η3 < . . .

be an infinite ascending sequence of Γ-limit maps. There exists a Γ-limit map η such that
for every n ∈ N, ηn < η.
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Proof. Assume that for each n, ηn is the Γ-limit map of (ηni )i∈N. Choose an index in such
that ker ηnin ∩ Bn = ker ηn ∩ Bn.

By construction, the sequence (ηnin )n∈N is stable. Denote its associated Γ-limit map by
η. We claim that for every n, ηn < η. Assume that for some n0, ηn0 ≮ η. Then there is an
element g ∈ ker η such that g < ker ηn0 . It follows that g < ker ηn for all n ≥ n0, and so
for each n ≥ max{n0, |g |}, g < ker ηnin . This implies that g < ker η, a contradiction. �

Theorem 7.11. Let G be f.g. There are only finitely many maximal Γ-limit maps from G.

Proof. The proof is by contradiction. If there are infinitely many maximal Γ-limit maps
then it is easily verified that there is a sequence (ηi) of pairwise distinct maximal Γ-limit
maps such that for each j, k ≥ i we have

ker η j ∩ Bi = ker ηk ∩ Bi,

where Bi is the Ball of radius i in G around the identity with respect to some fixed finite
generating set.

For each i choose ηi : G→ Γ such that ker ηi ∩ Bi = ker ηi ∩ Bi . The sequence (ηi) is
clearly stable. Let η : G→ G/ker

−→
(ηi) be the corresponding Γ-limit map.

After possibly removing a single ηi from the sequence we can assume that η 6≥ ηi for
all i as we would otherwise get a contradiction to the maximality of the ηi . Thus for each
i there exists gi ∈ G such that ηi(gi) , 1 and η(gi) = 1.

It follows that there exists a stable sequence (ϕi) ⊂ Hom(G, Γ) such that for each i we
have ker ϕi ∩ Bi = ker ηi ∩ Bi and ϕi(gi) , 1, in particular no ϕi factors through η as
η(gi) = 1.

Let ϕ : G → G/ker
−→
(ϕi) be the associated Γ-limit map, we clearly get ϕ = η. By

Theorem 7.5 a subsequence of (ϕi) factors through ϕ = η, a contradiction. �

Lemma7.12. Let Γ be a hyperbolic group and ϕ : F(x1, . . . , xn) → H be an epimorphism.
Assume that S ⊂ Fn = F(x1, . . . , xn) ⊂ Γ[x1, . . . , xn] is such that for every finite

S0 ⊂ S,
rad(ker ϕ ∪ S) ( rad(ker ϕ ∪ S0).

Then there is a Γ-limit map η : Fn → Fn/ker
−→
(ηi) such that ker ϕ ≤ ker η and that

rad(ker η ∪ S) ( rad(ker η ∪ S0)

for every finite S0 ⊂ S′.

Proof. By Theorem 7.11, there are only finitely many maximal Γ-limit maps ϕ1, . . . , ϕk :
H → Hi , put ηi = ϕi ◦ ϕ for 1 ≤ i ≤ k. Note that⋃

rad(ker ηi) = rad(ker ϕ)
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as any homomorphism from Fn to Γ that factors through ϕ must factor through some
maximal Γ-limit map and therefore through some ηi .

Assume that for each i there is a finite set Si
0 ⊂ S such that rad(ker ηi ∪ Si

0) =

rad(ker ηi ∪ S). Putting S0 :=
⋃

Si
0, we get

rad(ker ϕ ∪ S0) =
⋃

rad(ker ηi ∪ S0)

=
⋃

rad(ker ηi ∪ S)

= rad(S) ∩
⋃

rad(ker ηi)

= rad(S) ∩ rad(ker ϕ)
= rad(S ∪ ker ϕ),

which is a contradiction. Thus for some i0 such a set Si0
0 does not exist and the conclusion

follows by putting η = ηi0 . �

Corollary 7.13. Hyperbolic groups are equationally Noetherian.

Proof. Let Γ be a hyperbolic group. Because of Lemma 6.1 it suffices to check that for
any set S ⊂ Fn = F(x1, . . . , xn) ⊂ Γ[x1, . . . , xn] there exists a finite subset S0 ⊂ S such
that rad(S) = rad(S0).

Assume that n ∈ N and S = {w1,w2, . . .} ⊂ Fn such that rad(S) ( rad(S0) for every
finite S0 ⊂ S. We show that this implies the existence of an infinite descending sequence of
Γ-limit maps, contradicting Lemma 7.8. Let ϕ1 : Fn → Fn/〈〈w1〉〉 and η1 a Γ-limit map
with ker ϕ1 ≤ ker η1 as in Lemma 7.12. Then inductively for each i, pick wji ∈ S \ker ηi−1
and put

ϕi : Fn/〈〈ker ηi ∪ wji 〉〉

and apply Lemma 7.12 to obtain a Γ-limit map ηi with ker ϕi ≤ ker ηi . Then all ηi are
Γ-limit maps and

η1 > η2 > η3 > . . . . �
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