On approximation properties of semidirect products of groups
Annales mathématiques Blaise Pascal, Volume 27 (2020) no. 1, pp. 125-130.

Let be a class of groups closed under taking (split) extensions with finite kernel and fully residually –groups. We prove that contains all (split) {finitely generated residually finite }–by– groups. It follows that a split extension with a finitely generated residually finite kernel and a surjunctive quotient is surjunctive. This remained unknown even for direct products of a surjunctive group with the integers Z.

Soit une classe de groupes fermée par rapport aux extensions (scindées) avec un noyau fini et par rapport aux groupes multi-résiduellement . Nous montrons que contient toutes les extensions (scindées) de type {finiment engendré résiduellement fini}–par–. Nous obtenons en corollaire qu’une extension scindée avec un noyau finiment engendré résiduellement fini et un quotient surjonctif est surjonctive. Cela restait inconnu, même pour les produits directs d’un groupe surjonctif avec les entiers Z.

Published online:
DOI: 10.5802/ambp.386
Classification: 20E26, 20E22, 20E25, 37B05, 37B10
Keywords: Residually finite groups, surjunctive and sofic groups, semidirect product
Goulnara Arzhantseva 1; Światosław R. Gal 2

1 Universität Wien Fakultät für Mathematik Oskar–Morgenstern–Platz 1, 1090 Wien, Austria
2 Uniwersytet Wrocławski Instytut Matematyczny pl. Grunwaldzki 2/4, 50–384 Wrocław, Poland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AMBP_2020__27_1_125_0,
     author = {Goulnara Arzhantseva and \'Swiatos{\l}aw R. Gal},
     title = {On approximation properties of semidirect products of groups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {125--130},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {27},
     number = {1},
     year = {2020},
     doi = {10.5802/ambp.386},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/}
}
TY  - JOUR
AU  - Goulnara Arzhantseva
AU  - Światosław R. Gal
TI  - On approximation properties of semidirect products of groups
JO  - Annales mathématiques Blaise Pascal
PY  - 2020
SP  - 125
EP  - 130
VL  - 27
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/
DO  - 10.5802/ambp.386
LA  - en
ID  - AMBP_2020__27_1_125_0
ER  - 
%0 Journal Article
%A Goulnara Arzhantseva
%A Światosław R. Gal
%T On approximation properties of semidirect products of groups
%J Annales mathématiques Blaise Pascal
%D 2020
%P 125-130
%V 27
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/
%R 10.5802/ambp.386
%G en
%F AMBP_2020__27_1_125_0
Goulnara Arzhantseva; Światosław R. Gal. On approximation properties of semidirect products of groups. Annales mathématiques Blaise Pascal, Volume 27 (2020) no. 1, pp. 125-130. doi : 10.5802/ambp.386. https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/

[1] Goulnara Arzhantseva; Federico Berlai; Martin Finn-Sell; Lev Glebsky Unrestricted wreath products and sofic groups, Int. J. Algebra Comput., Volume 29 (2019) no. 2, pp. 343-355 | DOI | MR | Zbl

[2] Valerio Capraro; Martino Lupini Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture, Lecture Notes in Mathematics, 2136, Springer, 2015, viii+151 pages (with an appendix by Vladimir Pestov) | DOI | MR | Zbl

[3] Tullio Ceccherini-Silberstein; Michel Coornaert Cellular automata and groups, Springer Monographs in Mathematics, Springer, 2010, xx+439 pages | DOI | MR | Zbl

[4] Tullio Ceccherini-Silberstein; Michel Coornaert Surjunctivity and Reversibility of Cellular Automata over Concrete Categories, Trends in Harmonic Analysis (Springer INdAM Series), Volume 3, Springer, 2013, pp. 91-133 | DOI | Zbl

[5] Christophe Champetier; Vincent Guirardel Limit groups as limits of free groups, Isr. J. Math., Volume 146 (2005), pp. 1-75 | DOI | MR | Zbl

[6] Pierre Deligne Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Math. Acad. Sci. Paris, Volume 287 (1978) no. 4, p. A203-A208 | MR | Zbl

[7] Walter Gottschalk Some general dynamical notions, Recent advances in topological dynamics (Lecture Notes in Mathematics), Volume 318, Springer, 1973, pp. 120-125 | MR | Zbl

[8] Mikhael Gromov Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., Volume 1 (1999) no. 2, pp. 109-197 | DOI | MR | Zbl

[9] Richard M. Hill Non-residually finite extensions of arithmetic groups, Res. Number Theory, Volume 5 (2019) no. 1, 2, 27 pages | DOI | MR | Zbl

[10] Anatoliĭ Malʼcev On homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak., Volume 18 (1956), pp. 49-60

[11] John J. Millson Real vector bundles with discrete structure group, Topology, Volume 18 (1979) no. 1, pp. 83-89 | DOI | MR | Zbl

[12] Vladimir G. Pestov Hyperlinear and sofic groups: a brief guide, Bull. Symb. Log., Volume 14 (2008) no. 4, pp. 449-480 | DOI | MR | Zbl

[13] Anatoliĭ M. Vershik; Evgeniĭ I. Gordon Groups that are locally embeddable in the class of finite groups, Algebra Anal., Volume 9 (1997) no. 1, pp. 71-97 | MR | Zbl

[14] Benjamin Weiss Sofic groups and dynamical systems, Sankhyā, Ser. A, Volume 62 (2000) no. 3, pp. 350-359 Ergodic theory and harmonic analysis (Mumbai, 1999) | MR | Zbl

Cited by Sources: