[Sur les propriétés d’approximation des produits semi-directs des groupes]
Soit une classe de groupes fermée par rapport aux extensions (scindées) avec un noyau fini et par rapport aux groupes multi-résiduellement . Nous montrons que contient toutes les extensions (scindées) de type finiment engendré résiduellement fini–par–. Nous obtenons en corollaire qu’une extension scindée avec un noyau finiment engendré résiduellement fini et un quotient surjonctif est surjonctive. Cela restait inconnu, même pour les produits directs d’un groupe surjonctif avec les entiers .
Let be a class of groups closed under taking (split) extensions with finite kernel and fully residually –groups. We prove that contains all (split) finitely generated residually finite –by– groups. It follows that a split extension with a finitely generated residually finite kernel and a surjunctive quotient is surjunctive. This remained unknown even for direct products of a surjunctive group with the integers .
Mots clés : Residually finite groups, surjunctive and sofic groups, semidirect product
Goulnara Arzhantseva 1 ; Światosław R. Gal 2
@article{AMBP_2020__27_1_125_0, author = {Goulnara Arzhantseva and \'Swiatos{\l}aw R. Gal}, title = {On approximation properties of semidirect products of groups}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {125--130}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {27}, number = {1}, year = {2020}, doi = {10.5802/ambp.386}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/} }
TY - JOUR AU - Goulnara Arzhantseva AU - Światosław R. Gal TI - On approximation properties of semidirect products of groups JO - Annales mathématiques Blaise Pascal PY - 2020 SP - 125 EP - 130 VL - 27 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/ DO - 10.5802/ambp.386 LA - en ID - AMBP_2020__27_1_125_0 ER -
%0 Journal Article %A Goulnara Arzhantseva %A Światosław R. Gal %T On approximation properties of semidirect products of groups %J Annales mathématiques Blaise Pascal %D 2020 %P 125-130 %V 27 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/ %R 10.5802/ambp.386 %G en %F AMBP_2020__27_1_125_0
Goulnara Arzhantseva; Światosław R. Gal. On approximation properties of semidirect products of groups. Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 1, pp. 125-130. doi : 10.5802/ambp.386. https://ambp.centre-mersenne.org/articles/10.5802/ambp.386/
[1] Unrestricted wreath products and sofic groups, Int. J. Algebra Comput., Volume 29 (2019) no. 2, pp. 343-355 | DOI | MR | Zbl
[2] Introduction to sofic and hyperlinear groups and Connes’ embedding conjecture, Lecture Notes in Mathematics, 2136, Springer, 2015, viii+151 pages (with an appendix by Vladimir Pestov) | DOI | MR | Zbl
[3] Cellular automata and groups, Springer Monographs in Mathematics, Springer, 2010, xx+439 pages | DOI | MR | Zbl
[4] Surjunctivity and Reversibility of Cellular Automata over Concrete Categories, Trends in Harmonic Analysis (Springer INdAM Series), Volume 3, Springer, 2013, pp. 91-133 | DOI | Zbl
[5] Limit groups as limits of free groups, Isr. J. Math., Volume 146 (2005), pp. 1-75 | DOI | MR | Zbl
[6] Extensions centrales non résiduellement finies de groupes arithmétiques, C. R. Math. Acad. Sci. Paris, Volume 287 (1978) no. 4, p. A203-A208 | MR | Zbl
[7] Some general dynamical notions, Recent advances in topological dynamics (Lecture Notes in Mathematics), Volume 318, Springer, 1973, pp. 120-125 | MR | Zbl
[8] Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., Volume 1 (1999) no. 2, pp. 109-197 | DOI | MR | Zbl
[9] Non-residually finite extensions of arithmetic groups, Res. Number Theory, Volume 5 (2019) no. 1, 2, 27 pages | DOI | MR | Zbl
[10] On homomorphisms onto finite groups, Ivanov. Gos. Ped. Inst. Uč. Zap. Fiz.-Mat. Fak., Volume 18 (1956), pp. 49-60
[11] Real vector bundles with discrete structure group, Topology, Volume 18 (1979) no. 1, pp. 83-89 | DOI | MR | Zbl
[12] Hyperlinear and sofic groups: a brief guide, Bull. Symb. Log., Volume 14 (2008) no. 4, pp. 449-480 | DOI | MR | Zbl
[13] Groups that are locally embeddable in the class of finite groups, Algebra Anal., Volume 9 (1997) no. 1, pp. 71-97 | MR | Zbl
[14] Sofic groups and dynamical systems, Sankhyā, Ser. A, Volume 62 (2000) no. 3, pp. 350-359 Ergodic theory and harmonic analysis (Mumbai, 1999) | MR | Zbl
Cité par Sources :