The -linear version of the Hardy–Littlewood inequality for -linear forms on spaces and recently proved by Dimant and Sevilla-Peris, asserts that
for all continuous -linear forms or . We prove a technical lemma, of independent interest, that pushes further some techniques that go back to the seminal ideas of Hardy and Littlewood. As a consequence, we show that the inequality above is still valid with replaced by . In particular, we conclude that for the optimal constants of the above inequality are uniformly bounded by also, when we improve the estimates of the original inequality of Hardy and Littlewood.
Mots clés : Absolutely summing operators, Hardy–Littlewood inequalities, constants
Nacib Albuquerque 1 ; Gustavo Araújo 2 ; Mariana Maia 3, 1 ; Tony Nogueira 4, 1 ; Daniel Pellegrino 1 ; Joedson Santos 1
@article{AMBP_2018__25_1_1_0, author = {Nacib Albuquerque and Gustavo Ara\'ujo and Mariana Maia and Tony Nogueira and Daniel Pellegrino and Joedson Santos}, title = {Optimal {Hardy{\textendash}Littlewood} inequalities uniformly bounded by a universal constant}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--20}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {25}, number = {1}, year = {2018}, doi = {10.5802/ambp.371}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.371/} }
TY - JOUR AU - Nacib Albuquerque AU - Gustavo Araújo AU - Mariana Maia AU - Tony Nogueira AU - Daniel Pellegrino AU - Joedson Santos TI - Optimal Hardy–Littlewood inequalities uniformly bounded by a universal constant JO - Annales mathématiques Blaise Pascal PY - 2018 SP - 1 EP - 20 VL - 25 IS - 1 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.371/ DO - 10.5802/ambp.371 LA - en ID - AMBP_2018__25_1_1_0 ER -
%0 Journal Article %A Nacib Albuquerque %A Gustavo Araújo %A Mariana Maia %A Tony Nogueira %A Daniel Pellegrino %A Joedson Santos %T Optimal Hardy–Littlewood inequalities uniformly bounded by a universal constant %J Annales mathématiques Blaise Pascal %D 2018 %P 1-20 %V 25 %N 1 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.371/ %R 10.5802/ambp.371 %G en %F AMBP_2018__25_1_1_0
Nacib Albuquerque; Gustavo Araújo; Mariana Maia; Tony Nogueira; Daniel Pellegrino; Joedson Santos. Optimal Hardy–Littlewood inequalities uniformly bounded by a universal constant. Annales mathématiques Blaise Pascal, Tome 25 (2018) no. 1, pp. 1-20. doi : 10.5802/ambp.371. https://ambp.centre-mersenne.org/articles/10.5802/ambp.371/
[1] Domination spaces and factorization of linear and multilinear summing operators, Quaest. Math., Volume 39 (2016) no. 8, pp. 1071-1092 | DOI | MR
[2] Sharp generalizations of the multilinear Bohnenblust-Hille inequality, J. Funct. Anal., Volume 266 (2014) no. 6, pp. 3726-3740 | DOI | MR | Zbl
[3] Optimal Hardy-Littlewood type inequalities for polynomials and multilinear operators, Isr. J. Math., Volume 211 (2016) no. 1, pp. 197-220 | DOI | MR | Zbl
[4] Anisotropic regularity principle in sequence spaces and applications http://www.worldscientific.com/doi/abs/10.1142/S0219199717500870 (https://www.worldscientific.com/doi/abs/10.1142/S0219199717500870, to appear in Commun. Contemp. Math.) | DOI
[5] On the constants of the Bohnenblust-Hille and Hardy-Littlewood inequalities, Bull. Braz. Math. Soc. (N.S.), Volume 48 (2017) no. 1, pp. 141-169 | DOI | MR | Zbl
[6] On the upper bounds for the constants of the Hardy-Littlewood inequality, J. Funct. Anal., Volume 267 (2014) no. 6, pp. 1878-1888 | DOI | MR | Zbl
[7] Optimal exponents for Hardy-Littlewood inequalities for m-linear operators, Linear Algebra Appl., Volume 531 (2017), pp. 399-422 http://www.sciencedirect.com/science/article/pii/S0024379517303713 | DOI | Zbl
[8] Multiple summing maps: Coordinatewise summability, inclusion theorems and -Sidon sets, J. Funct. Anal., Volume 274 (2018) no. 4, pp. 1129-1154 http://www.sciencedirect.com/science/article/pii/S0022123617303270 | DOI | Zbl
[9] The Bohr radius of the n-dimensional polydisk is equivalent to , Adv. Math., Volume 264 (2014), pp. 726-746 http://www.sciencedirect.com/science/article/pii/S000187081400262X | DOI | Zbl
[10] On the absolute convergence of Dirichlet series, Ann. Math., Volume 32 (1931) no. 3, pp. 600-622 | DOI | MR | Zbl
[11] Positive multiple summing and concave multilinear operators on Banach lattices, Mediterr. J. Math., Volume 12 (2015) no. 1, pp. 77-87 | DOI | MR | Zbl
[12] Some applications of the regularity principle in sequence spaces, Positivity, Volume 22 (2018) no. 1, pp. 191-198 | DOI
[13] Remarks on an inequality of Hardy and Littlewood, Quaest. Math., Volume 39 (2016) no. 8, pp. 1101-1113 | DOI | MR
[14] A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal., Volume 256 (2009) no. 5, pp. 1642-1664 | DOI | MR | Zbl
[15] Strong extensions for -summing operators acting in -convex Banach function spaces for , Positivity, Volume 20 (2016) no. 4, pp. 999-1014 erratum in ibid, 21(1):513–515, 2017 | Zbl
[16] Absolutely summing operators, Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, 1995, xvi+474 pages | DOI | MR | Zbl
[17] Summation of Coefficients of Polynomials on Spaces, Publ. Mat., Barc., Volume 60 (2016) no. 2, pp. 289-310 | DOI | Zbl
[18] Bilinear forms bounded in space , Quart. J. Math., Volume 5 (1934) no. 1, pp. 241-254 | Zbl
[19] On bounded bilinear forms in an infinite number of variables, Quart. J. Math., Volume 1 (1930) no. 1, pp. 164-174 | Zbl
[20] Some applications of hypercontractive inequalities in quantum information theory, J. Math. Phys., Volume 53 (2012) no. 12, 122206, 15 pages (122206, 15) | DOI | MR | Zbl
[21] The optimal constants of the mixed -Littlewood inequality, J. Number Theory, Volume 160 (2016), pp. 11-18 | DOI | MR | Zbl
[22] Optimal blow up rate for the constants of Khinchin type inequalities, Quaest. Math., Volume 41 (2018) no. 3, pp. 303-318 | DOI
[23] A regularity principle in sequence spaces and applications, Bull. Sci. Math., Volume 141 (2017) no. 8, pp. 802-837 http://www.sciencedirect.com/science/article/pii/S0007449717300738 | DOI | Zbl
[24] Towards sharp Bohnenblust–Hille constants, Commun. Contemp. Math., Volume 20 (2018) no. 3, 1750029, 33 pages | Zbl
[25] On bounded multilinear forms on a class of spaces, J. Math. Anal. Appl., Volume 81 (1981) no. 2, pp. 561-568 | DOI | MR | Zbl
Cité par Sources :