Soit
Ceci impliquerait que, pour une preuve de la conjecture de Greenberg, certains résultats
Let
This would imply that, for a proof of Greenberg’s conjecture, some deep
Mots-clés : Greenberg’s conjecture, Iwasawa’s theory,
Georges Gras 1

@article{AMBP_2017__24_2_235_0, author = {Georges Gras}, title = {Approche $p$-adique de la conjecture de {Greenberg} pour les corps totalement r\'eels}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {235--291}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {24}, number = {2}, year = {2017}, doi = {10.5802/ambp.370}, language = {fr}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.370/} }
TY - JOUR AU - Georges Gras TI - Approche $p$-adique de la conjecture de Greenberg pour les corps totalement réels JO - Annales mathématiques Blaise Pascal PY - 2017 SP - 235 EP - 291 VL - 24 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.370/ DO - 10.5802/ambp.370 LA - fr ID - AMBP_2017__24_2_235_0 ER -
%0 Journal Article %A Georges Gras %T Approche $p$-adique de la conjecture de Greenberg pour les corps totalement réels %J Annales mathématiques Blaise Pascal %D 2017 %P 235-291 %V 24 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.370/ %R 10.5802/ambp.370 %G fr %F AMBP_2017__24_2_235_0
Georges Gras. Approche $p$-adique de la conjecture de Greenberg pour les corps totalement réels. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 2, pp. 235-291. doi : 10.5802/ambp.370. https://ambp.centre-mersenne.org/articles/10.5802/ambp.370/
[1] Sur la constante de Kummer-Leopoldt d’un corps de nombres, Manuscr. Math., Volume 115 (2004) no. 1, pp. 55-72 https://www.researchgate.net/publication/225914673 | DOI | MR | Zbl
[2] Sur les égalités du miroir et certaines formes faibles de la conjecture de Greenberg, Manuscr. Math., Volume 116 (2005) no. 3, pp. 323-340 https://www.researchgate.net/publication/226875893 | DOI | MR | Zbl
[3] The logarithmic class group package in PARI/GP, Publications mathématiques de Besançon. Algèbre et théorie des nombres (Publications Mathématiques de la Faculté des Sciences de Besançon), Volume 2016, Presses Universitaires de Franche-Comté, 2016, pp. 5-18 | Zbl
[4] On modified circular units and annihilation of real classes, Nagoya Math., Volume 177 (2005), pp. 77-115 http://projecteuclid.org/euclid.nmj/1114632159 | DOI | MR | Zbl
[5] A criterion for Greenberg’s conjecture, Proc. Am. Math. Soc., Volume 136 (2008) no. 8, pp. 2741-2744 http://www.ams.org/journals/proc/2008-136-08/S0002-9939-08-09283-6/S0002-9939-08-09283-6.pdf | DOI | MR | Zbl
[6]
[7] Generalized Iwasawa invariants in a family, Compos. Math., Volume 51 (1984) no. 1, pp. 89-103 | MR | Zbl
[8] Cyclotomic units and Greenberg’s conjecture for real quadratic fields, Math. Comput., Volume 65 (1996) no. 215, pp. 1339-1348 http://www.ams.org/journals/mcom/1996-65-215/S0025-5718-96-00730-2/S0025-5718-96-00730-2.pdf | DOI | MR | Zbl
[9] Greenberg’s conjecture and relative unit groups for real quadratic fields, J. Number Theory, Volume 65 (1997) no. 1, pp. 23-39 http://www.sciencedirect.com/science/article/pii/S0022314X97921260 | DOI | MR | Zbl
[10] On
[11] Computational research on Greenberg’s conjecture for real quadratic fields, Mem. Sch. Sci. Eng. Waseda Univ. (1994) no. 58, p. 175-203 (1995) | MR | Zbl
[12] The Iwasawa
[13] Sur les
[14] Nombre de
[15] Classes généralisées invariantes, J. Math. Soc. Japan, Volume 46 (1994) no. 3, pp. 467-476 http://projecteuclid.org/euclid.jmsj/1227104692 | DOI | MR | Zbl
[16] Class field theory : From theory to practice, Springer Monographs in Mathematics, Springer, 2005, xiv+491 pages (Second corrected printing) | DOI | MR
[17] Les
[18] Invariant generalized ideal classes – structure theorems for
[19] The p-adic Kummer–Leopoldt constant – Normalized p-adic regulator (2017) (https://arxiv.org/abs/1701.06857, to appear in Int. J. Number Theory)
[20] Sur les corps de nombres réguliers, Math. Z., Volume 202 (1989) no. 3, pp. 343-365 https://eudml.org/doc/174095 | DOI | MR | Zbl
[21] On the Iwasawa invariants of totally real number fields, Am. J. Math., Volume 98 (1976) no. 1, pp. 263-284 http://www.jstor.org/stable/2373625 | DOI | MR | Zbl
[22] Prime decomposition and the Iwasawa mu-invariant (2016) (https://arxiv.org/abs/1601.04195)
[23] An estimate for Heilbronn’s exponential sum, Analytic number theory, Vol. 2 (Allerton Park, IL, 1995) (Progr. Math.), Volume 139, Birkhäuser, 1996, pp. 451-463 | MR | Zbl
[24] On the Iwasawa invariants of certain real abelian fields. II, Int. J. Math., Volume 7 (1996) no. 6, pp. 721-744 http://www.worldscientific.com/doi/pdfplus/10.1142/S0129167X96000384 | DOI | MR | Zbl
[25] On the Iwasawa invariants of certain real abelian fields, Tohoku Math. J., Volume 49 (1997) no. 2, pp. 203-215 http://projecteuclid.org/download/pdf_1/euclid.tmj/1178225147 | DOI | Zbl
[26] On
[27] On the
[28] L’arithmétique des
[29] Théorie
[30] Normes cyclotomiques naïves et unités logarithmiques (2016) (http://arxiv.org/abs/1609.01901)
[31] Note sur la conjecture de Greenberg (2016) (https://arxiv.org/abs/1612.00718)
[32] Corps
[33] Computing Iwasawa modules of real quadratic number fields, Compos. Math., Volume 97 (1995) no. 1-2, pp. 135-155 Special issue in honour of Frans Oort. Erratum in ibid. 103 (1996), no. 2, p. 241 | MR | Zbl
[34] On capitulation cokernels in Iwasawa theory, Am. J. Math., Volume 127 (2005) no. 4, pp. 851-877 http://www.unilim.fr/pages_perso/matthieu.lefloch/coker3.pdf | DOI | MR | Zbl
[35] Sur l’arithmétique des corps de nombres
[36] Sur la conjecture faible de Greenberg dans le cas abélien
[37] Formules de genres et conjectures de Greenberg, Ann. Math. Québec (2017) (https://doi.org/10.1007/s40316-017-0093-y) | DOI
[38] Sur une forme faible de la conjecture de Greenberg II, Int. J. Number Theory, Volume 13 (2017) no. 4, pp. 1061-1070 | DOI | MR | Zbl
[39] On the Iwasawa invariants of the cyclotomic
[40] A note on Greenberg’s conjecture for real abelian number fields, Manuscr. Math., Volume 88 (1995) no. 3, pp. 311-320 http://link.springer.com/article/10.1007/BF02567825 | DOI | MR | Zbl
[41] Sur le résidu de la fonction zêta
[42] Quelques applications du théorème de densité de Chebotarev, Publ. Math., Inst. Hautes Étud. Sci. (1981) no. 54, pp. 323-401 http://archive.numdam.org/article/PMIHES_1981__54__123_0.pdf | MR | Zbl
[43] Corps locaux, Actualités Scientifiques et Industrielles, 1296, Hermann, 2004, 245 pages | MR | Zbl
[44] On
[45] On capitulation of
[46] On cyclotomic
[47] On
[48] Iwasawa
[49] PARI/GP version 2.9.0, 2016 (available from http://pari.math.u-bordeaux.fr/)
[50] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997, xiv+487 pages | DOI | MR | Zbl
[51] On the Iwasawa invariants of totally real number fields, Manuscr. Math., Volume 79 (1993) no. 1, pp. 1-5 http://www.digizeitschriften.de/download/PPN365956996_0079/PPN365956996_0079___log4.pdf | DOI | MR | Zbl
- Algorithmic complexity of Greenberg’s conjecture, Archiv der Mathematik, Volume 117 (2021) no. 3, p. 277 | DOI:10.1007/s00013-021-01618-9
- Tate–Shafarevich groups in the cyclotomic Zˆ-extension and Weber's class number problem, Journal of Number Theory, Volume 228 (2021), p. 219 | DOI:10.1016/j.jnt.2021.04.019
- New criteria for Vandiver’s conjecture using Gauss sums – Heuristics and numerical experiments, Proceedings - Mathematical Sciences, Volume 130 (2020) no. 1 | DOI:10.1007/s12044-020-00561-z
- Practice of the Incomplete
-Ramification Over a Number Field – History of Abelian -Ramification, Communications in Advanced Mathematical Sciences, Volume 2 (2019) no. 4, p. 251 | DOI:10.33434/cams.573729 - Formules de genres et conjecture de Greenberg, Annales mathématiques du Québec, Volume 42 (2018) no. 2, p. 267 | DOI:10.1007/s40316-017-0093-y
Cité par 5 documents. Sources : Crossref