Nous étudions l’existence globale, l’unicité et la positivité de solutions faibles pour une classe de systèmes de réaction-diffusion provenant d’équations chimiques. Le théorème principal repose uniquement sur une inégalité de Sobolev logarithmique et sur l’intégrabilité exponentielle des conditions initiales. En particulier nous développons une stratégie indépendante de la dimension dans un domaine non borné.
We study global existence, uniqueness and positivity of weak solutions of a class of reaction-diffusion systems coming from chemical reactions. The principal result is based only on a logarithmic Sobolev inequality and the exponential integrability of the initial data. In particular we develop a strategy independent of dimensions in an unbounded domain.
Keywords: Reaction-diffusion systems, Markov semigroups, logarithmic Sobolev inequality, infinite dimensions.
Mots clés : Reaction-diffusion systems, Markov semigroups, logarithmic Sobolev inequality, infinite dimensions.
Pierre Fougères 1 ; Ivan Gentil 2 ; Boguslaw Zegarliński 3
@article{AMBP_2017__24_1_1_0, author = {Pierre Foug\`eres and Ivan Gentil and Boguslaw Zegarli\'nski}, title = {Solution of a class of reaction-diffusion systems via logarithmic {Sobolev} inequality}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--53}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {24}, number = {1}, year = {2017}, doi = {10.5802/ambp.363}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/} }
TY - JOUR AU - Pierre Fougères AU - Ivan Gentil AU - Boguslaw Zegarliński TI - Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality JO - Annales mathématiques Blaise Pascal PY - 2017 SP - 1 EP - 53 VL - 24 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/ DO - 10.5802/ambp.363 LA - en ID - AMBP_2017__24_1_1_0 ER -
%0 Journal Article %A Pierre Fougères %A Ivan Gentil %A Boguslaw Zegarliński %T Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality %J Annales mathématiques Blaise Pascal %D 2017 %P 1-53 %V 24 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/ %R 10.5802/ambp.363 %G en %F AMBP_2017__24_1_1_0
Pierre Fougères; Ivan Gentil; Boguslaw Zegarliński. Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 1, pp. 1-53. doi : 10.5802/ambp.363. https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/
[1] Existence and regularity for semilinear parabolic evolution equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (1984) no. 4, pp. 593-676 | MR | Zbl
[2] Global existence for semilinear parabolic systems, J. Reine Angew. Math., Volume 360 (1985), pp. 47-83 | DOI | MR | Zbl
[3] Continuité des contractions dans les espaces de Dirichlet, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976) (Lecture Notes in Mathematics), Volume 563 (1976), pp. 1-26 | MR | Zbl
[4] Analysis and Geometry of Markov Diffusion Operators, Grundlehren der mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | Zbl
[5] Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Rev. Mat. Iberoam., Volume 22 (2006) no. 3, pp. 993-1067 | DOI | MR | Zbl
[6] Entropy bounds and isoperimetry, Mem. Am. Math. Soc., Volume 176 (2005) no. 829, x+69 pages | DOI | MR | Zbl
[7] Distributions with slow tails and ergodicity of Markov semigroups in infinite dimensions, Around the research of Vladimir Maz’ya. I (International Mathematical Series (New York)), Volume 11, Springer, 2010, pp. 13-79 | Zbl
[8] The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal., Volume 166 (1999) no. 1, pp. 168-178 | DOI | MR | Zbl
[9] Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, 14, Walter de Gruyter & Co., 1991, x+325 pages | DOI | MR | Zbl
[10] Close-to-equilibrium behaviour of quadratic reaction-diffusion systems with detailed balance (2016) (preprint)
[11] Improved duality estimates and applications to reaction-diffusion equations, Comm. Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1185-1204 | DOI | Zbl
[12] Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 12 | DOI | MR | Zbl
[13] Geometry of Orlicz spaces, Diss. Math., Volume 356 (1996) (204 pages) | MR | Zbl
[14] Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1990, x+197 pages | MR | Zbl
[15] About entropy methods for reaction-diffusion equations, Riv. Mat. Univ. Parma, Volume 7 (2007), pp. 81-123 | MR | Zbl
[16] Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., Volume 319 (2006) no. 1, pp. 157-176 | DOI | MR | Zbl
[17] Entropy Methods for Reaction-Diffusion Equations: Slowly Growing A-priori Bounds, Rev. Mat. Iberoam., Volume 24 (2008) no. 2, pp. 407-431 | DOI | Zbl
[18] Vector measures, Mathematical Surveys, 15, American Mathematical Society, 1977, xiii+322 pages | Zbl
[19] Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 460 (2004) no. 2044, pp. 1107-1129 | DOI | MR | Zbl
[20] Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxii+749 pages | MR | Zbl
[21] Sub-Gaussian measures and associated semilinear problems, Rev. Mat. Iberoam., Volume 28 (2012) no. 2, pp. 305-350 | Zbl
[22] Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, 1964, xiv+347 pages | Zbl
[23] Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., 2011, x+489 pages | MR | Zbl
[24] Asymptotic behaviour of reversible chemical reaction-diffusion equations, Kinet. Relat. Models, Volume 3 (2010) no. 3, pp. 427-444 | DOI | MR | Zbl
[25] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | Zbl
[26] Lectures on logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXVI (Lecture Notes in Mathematics), Volume 1801, Springer, Berlin, 2003, pp. 1-134 | MR | Zbl
[27] Coercive inequalities on metric measure spaces, J. Funct. Anal., Volume 258 (2010) no. 3, pp. 814-851 | DOI | MR | Zbl
[28] Logarithmic Sobolev inequalities for infinite dimensional Hörmander type generators on the Heisenberg group, Potential Anal., Volume 31 (2009) no. 1, pp. 79-102 | DOI | MR | Zbl
[29] Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968
[30] Coercive inequalities for Hörmander type generators in infinite dimensions, J. Funct. Anal., Volume 247 (2007) no. 2, pp. 438-476 | DOI | MR | Zbl
[31] Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer, 1992, vi+209 pages | DOI | MR | Zbl
[32] Équilibres chimiques en solution acqueuse, Masson, Paris, 1989, x+301 pages
[33] Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., Volume 78 (2010) no. 2, pp. 417-455 | DOI | MR | Zbl
[34] Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991, xii+449 pages | MR | Zbl
[35] Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups, J. Funct. Anal., Volume 243 (2007) no. 1, pp. 28-66 | DOI | MR | Zbl
[36] Global solutions of reaction-diffusion systems, Lecture Notes in Mathematics, 1072, Springer, 1984, v+216 pages | MR | Zbl
[37] Topics in Banach space integration, Series in Real Analysis, 10, World Scientific Publishing Co., 2005, xiv+298 pages | DOI | MR | Zbl
[38] The logarithmic Sobolev inequality for continuous spin systems on a lattice, J. Funct. Anal., Volume 104 (1992) no. 2, pp. 299-326 | DOI | MR | Zbl
[39] Partial differential equations. III Nonlinear equations, Applied Mathematical Sciences, 117, Springer, 1997, xxii+608 pages (Nonlinear equations, Corrected reprint of the 1996 original) | MR | Zbl
[40] Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 74-102 | DOI | MR | Zbl
[41] Functional analysis, Grundlehren der Mathematischen Wissenschaften, 123, Springer, 1965, xi+458 pages | MR | Zbl
[42] On log-Sobolev inequalities for infinite lattice systems, Lett. Math. Phys., Volume 20 (1990) no. 3, pp. 173-182 | DOI | MR | Zbl
[43] The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys., Volume 175 (1996) no. 2, pp. 401-432 http://projecteuclid.org/euclid.cmp/1104275930 | DOI | MR | Zbl
[44] Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 584-637 | DOI | MR | Zbl
[45] Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains, J. Dyn. Differ. Equations, Volume 19 (2007) no. 1, pp. 1-74 | DOI | MR | Zbl
Cité par Sources :