Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality
Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 1, pp. 1-53.

Nous étudions l’existence globale, l’unicité et la positivité de solutions faibles pour une classe de systèmes de réaction-diffusion provenant d’équations chimiques. Le théorème principal repose uniquement sur une inégalité de Sobolev logarithmique et sur l’intégrabilité exponentielle des conditions initiales. En particulier nous développons une stratégie indépendante de la dimension dans un domaine non borné.

We study global existence, uniqueness and positivity of weak solutions of a class of reaction-diffusion systems coming from chemical reactions. The principal result is based only on a logarithmic Sobolev inequality and the exponential integrability of the initial data. In particular we develop a strategy independent of dimensions in an unbounded domain.

Publié le :
DOI : 10.5802/ambp.363
Classification : 28B10, 35K57, 35R15
Keywords: Reaction-diffusion systems, Markov semigroups, logarithmic Sobolev inequality, infinite dimensions.
Mots clés : Reaction-diffusion systems, Markov semigroups, logarithmic Sobolev inequality, infinite dimensions.

Pierre Fougères 1 ; Ivan Gentil 2 ; Boguslaw Zegarliński 3

1 Institut de Mathématiques de Toulouse, CNRS UMR 5219 Université de Toulouse Route de Narbonne 31062 Toulouse, France
2 Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille Jordan 43 blvd. du 11 novembre 1918, F-69622 Villeurbanne cedex, France
3 Imperial College, London South Kensington Campus London SW7 2AZ, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2017__24_1_1_0,
     author = {Pierre Foug\`eres and Ivan Gentil and Boguslaw Zegarli\'nski},
     title = {Solution of a class of reaction-diffusion systems via logarithmic {Sobolev} inequality},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--53},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {24},
     number = {1},
     year = {2017},
     doi = {10.5802/ambp.363},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/}
}
TY  - JOUR
AU  - Pierre Fougères
AU  - Ivan Gentil
AU  - Boguslaw Zegarliński
TI  - Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality
JO  - Annales mathématiques Blaise Pascal
PY  - 2017
SP  - 1
EP  - 53
VL  - 24
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/
DO  - 10.5802/ambp.363
LA  - en
ID  - AMBP_2017__24_1_1_0
ER  - 
%0 Journal Article
%A Pierre Fougères
%A Ivan Gentil
%A Boguslaw Zegarliński
%T Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality
%J Annales mathématiques Blaise Pascal
%D 2017
%P 1-53
%V 24
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/
%R 10.5802/ambp.363
%G en
%F AMBP_2017__24_1_1_0
Pierre Fougères; Ivan Gentil; Boguslaw Zegarliński. Solution of a class of reaction-diffusion systems via logarithmic Sobolev inequality. Annales mathématiques Blaise Pascal, Tome 24 (2017) no. 1, pp. 1-53. doi : 10.5802/ambp.363. https://ambp.centre-mersenne.org/articles/10.5802/ambp.363/

[1] Herbert Amann Existence and regularity for semilinear parabolic evolution equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 11 (1984) no. 4, pp. 593-676 | MR | Zbl

[2] Herbert Amann Global existence for semilinear parabolic systems, J. Reine Angew. Math., Volume 360 (1985), pp. 47-83 | DOI | MR | Zbl

[3] Alano Ancona Continuité des contractions dans les espaces de Dirichlet, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976) (Lecture Notes in Mathematics), Volume 563 (1976), pp. 1-26 | MR | Zbl

[4] Dominique Bakry; Ivan Gentil; Michel Ledoux Analysis and Geometry of Markov Diffusion Operators, Grundlehren der mathematischen Wissenschaften, 348, Springer, 2014, xx+552 pages | Zbl

[5] Frank Barthe; Patrick Cattiaux; Cyril Roberto Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry, Rev. Mat. Iberoam., Volume 22 (2006) no. 3, pp. 993-1067 | DOI | MR | Zbl

[6] Sergey G. Bobkov; Bogusław Zegarliński Entropy bounds and isoperimetry, Mem. Am. Math. Soc., Volume 176 (2005) no. 829, x+69 pages | DOI | MR | Zbl

[7] Sergey G. Bobkov; Bogusław Zegarliński Distributions with slow tails and ergodicity of Markov semigroups in infinite dimensions, Around the research of Vladimir Maz’ya. I (International Mathematical Series (New York)), Volume 11, Springer, 2010, pp. 13-79 | Zbl

[8] Thierry Bodineau; Bernard Helffer The log-Sobolev inequality for unbounded spin systems, J. Funct. Anal., Volume 166 (1999) no. 1, pp. 168-178 | DOI | MR | Zbl

[9] Nicolas Bouleau; Francis Hirsch Dirichlet forms and analysis on Wiener space, de Gruyter Studies in Mathematics, 14, Walter de Gruyter & Co., 1991, x+325 pages | DOI | MR | Zbl

[10] M. J. Càceres; José A. Cañizo Close-to-equilibrium behaviour of quadratic reaction-diffusion systems with detailed balance (2016) (preprint)

[11] José A. Cañizo; Laurent Desvillettes; Klemens Fellner Improved duality estimates and applications to reaction-diffusion equations, Comm. Partial Differential Equations, Volume 39 (2014) no. 6, pp. 1185-1204 | DOI | Zbl

[12] José Antonio Carrillo; Sabine Hittmeir; Ansgar Jüngel Cross diffusion and nonlinear diffusion preventing blow up in the Keller-Segel model, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 12 | DOI | MR | Zbl

[13] Shutao Chen Geometry of Orlicz spaces, Diss. Math., Volume 356 (1996) (204 pages) | MR | Zbl

[14] Edward Brian Davies Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1990, x+197 pages | MR | Zbl

[15] Laurent Desvillettes About entropy methods for reaction-diffusion equations, Riv. Mat. Univ. Parma, Volume 7 (2007), pp. 81-123 | MR | Zbl

[16] Laurent Desvillettes; Klemens Fellner Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl., Volume 319 (2006) no. 1, pp. 157-176 | DOI | MR | Zbl

[17] Laurent Desvillettes; Klemens Fellner Entropy Methods for Reaction-Diffusion Equations: Slowly Growing A-priori Bounds, Rev. Mat. Iberoam., Volume 24 (2008) no. 2, pp. 407-431 | DOI | Zbl

[18] Joe Diestel; J.Jerry jun. Uhl Vector measures, Mathematical Surveys, 15, American Mathematical Society, 1977, xiii+322 pages | Zbl

[19] Messoud A. Efendiev; Alain M. Miranville; Sergey V. Zelik Infinite-dimensional exponential attractors for nonlinear reaction-diffusion systems in unbounded domains and their approximation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., Volume 460 (2004) no. 2044, pp. 1107-1129 | DOI | MR | Zbl

[20] Lawrence C. Evans Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 2010, xxii+749 pages | MR | Zbl

[21] Pierre Fougères; Cyril Roberto; Bogusław Zegarliński Sub-Gaussian measures and associated semilinear problems, Rev. Mat. Iberoam., Volume 28 (2012) no. 2, pp. 305-350 | Zbl

[22] Avner Friedman Partial Differential Equations of Parabolic Type, Prentice Hall, Englewood Cliffs, 1964, xiv+347 pages | Zbl

[23] Masatoshi Fukushima; Yoichi Oshima; Masayoshi Takeda Dirichlet forms and symmetric Markov processes, de Gruyter Studies in Mathematics, 19, Walter de Gruyter & Co., 2011, x+489 pages | MR | Zbl

[24] Ivan Gentil; Bogusław Zegarliński Asymptotic behaviour of reversible chemical reaction-diffusion equations, Kinet. Relat. Models, Volume 3 (2010) no. 3, pp. 427-444 | DOI | MR | Zbl

[25] Leonard Gross Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | Zbl

[26] Alice Guionnet; Bogusław Zegarliński Lectures on logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXVI (Lecture Notes in Mathematics), Volume 1801, Springer, Berlin, 2003, pp. 1-134 | MR | Zbl

[27] Waldemar Hebisch; Bogusław Zegarliński Coercive inequalities on metric measure spaces, J. Funct. Anal., Volume 258 (2010) no. 3, pp. 814-851 | DOI | MR | Zbl

[28] James D. Inglis; I. Papageorgiou Logarithmic Sobolev inequalities for infinite dimensional Hörmander type generators on the Heisenberg group, Potential Anal., Volume 31 (2009) no. 1, pp. 79-102 | DOI | MR | Zbl

[29] Olga Aleksandrovna Ladyženskaja; Vsevolod A. Solonnikov; Nina Nikolaevna Uralʼceva Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, 23, American Mathematical Society, 1968

[30] Piotr Ługiewicz; Bogusław Zegarliński Coercive inequalities for Hörmander type generators in infinite dimensions, J. Funct. Anal., Volume 247 (2007) no. 2, pp. 438-476 | DOI | MR | Zbl

[31] Zhi-Ming Ma; Michael Röckner Introduction to the theory of (non-symmetric) Dirichlet forms, Universitext, Springer, 1992, vi+209 pages | DOI | MR | Zbl

[32] René Mahé; Jacques Fraissard Équilibres chimiques en solution acqueuse, Masson, Paris, 1989, x+301 pages

[33] Michel Pierre Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., Volume 78 (2010) no. 2, pp. 417-455 | DOI | MR | Zbl

[34] Malempati M. Rao; Zhong-Dao Ren Theory of Orlicz spaces, Monographs and Textbooks in Pure and Applied Mathematics, 146, Marcel Dekker Inc., New York, 1991, xii+449 pages | MR | Zbl

[35] Cyril Roberto; Bogusław Zegarliński Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups, J. Funct. Anal., Volume 243 (2007) no. 1, pp. 28-66 | DOI | MR | Zbl

[36] Franz Rothe Global solutions of reaction-diffusion systems, Lecture Notes in Mathematics, 1072, Springer, 1984, v+216 pages | MR | Zbl

[37] Štefan Schwabik; Guojo Ye Topics in Banach space integration, Series in Real Analysis, 10, World Scientific Publishing Co., 2005, xiv+298 pages | DOI | MR | Zbl

[38] Daniel W. Stroock; Bogusław Zegarliński The logarithmic Sobolev inequality for continuous spin systems on a lattice, J. Funct. Anal., Volume 104 (1992) no. 2, pp. 299-326 | DOI | MR | Zbl

[39] Michael E. Taylor Partial differential equations. III Nonlinear equations, Applied Mathematical Sciences, 117, Springer, 1997, xxii+608 pages (Nonlinear equations, Corrected reprint of the 1996 original) | MR | Zbl

[40] Nobuo Yoshida Application of log-Sobolev inequality to the stochastic dynamics of unbounded spin systems on the lattice, J. Funct. Anal., Volume 173 (2000) no. 1, pp. 74-102 | DOI | MR | Zbl

[41] Kosaku Yosida Functional analysis, Grundlehren der Mathematischen Wissenschaften, 123, Springer, 1965, xi+458 pages | MR | Zbl

[42] Bogusław Zegarliński On log-Sobolev inequalities for infinite lattice systems, Lett. Math. Phys., Volume 20 (1990) no. 3, pp. 173-182 | DOI | MR | Zbl

[43] Bogusław Zegarliński The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice, Comm. Math. Phys., Volume 175 (1996) no. 2, pp. 401-432 http://projecteuclid.org/euclid.cmp/1104275930 | DOI | MR | Zbl

[44] Sergey V. Zelik Attractors of reaction-diffusion systems in unbounded domains and their spatial complexity, Comm. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 584-637 | DOI | MR | Zbl

[45] Sergey V. Zelik Spatial and dynamical chaos generated by reaction-diffusion systems in unbounded domains, J. Dyn. Differ. Equations, Volume 19 (2007) no. 1, pp. 1-74 | DOI | MR | Zbl

Cité par Sources :