On bi-free De Finetti theorems
Annales mathématiques Blaise Pascal, Volume 23 (2016) no. 1, pp. 21-51.

We investigate possible generalizations of the de Finetti theorem to bi-free probability. We first introduce a twisted action of the quantum permutation groups corresponding to the combinatorics of bi-freeness. We then study properties of families of pairs of variables which are invariant under this action, both in the bi-noncommutative setting and in the usual noncommutative setting. We do not have a completely satisfying analogue of the de Finetti theorem, but we have partial results leading the way. We end with suggestions concerning the symmetries of a potential notion of n-freeness.

Published online:
DOI: 10.5802/ambp.353
Classification: 46L54, 46L53, 20G42
Keywords: Quantum groups, free probability, De Finetti theorem
Amaury Freslon 1; Moritz Weber 1

1 Saarland University, Fachbereich Mathematik, Postfach 151159, 66041 Saarbrücken, Germany
@article{AMBP_2016__23_1_21_0,
     author = {Amaury Freslon and Moritz Weber},
     title = {On bi-free {De} {Finetti} theorems},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {21--51},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {23},
     number = {1},
     year = {2016},
     doi = {10.5802/ambp.353},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.353/}
}
TY  - JOUR
AU  - Amaury Freslon
AU  - Moritz Weber
TI  - On bi-free De Finetti theorems
JO  - Annales mathématiques Blaise Pascal
PY  - 2016
SP  - 21
EP  - 51
VL  - 23
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.353/
DO  - 10.5802/ambp.353
LA  - en
ID  - AMBP_2016__23_1_21_0
ER  - 
%0 Journal Article
%A Amaury Freslon
%A Moritz Weber
%T On bi-free De Finetti theorems
%J Annales mathématiques Blaise Pascal
%D 2016
%P 21-51
%V 23
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.353/
%R 10.5802/ambp.353
%G en
%F AMBP_2016__23_1_21_0
Amaury Freslon; Moritz Weber. On bi-free De Finetti theorems. Annales mathématiques Blaise Pascal, Volume 23 (2016) no. 1, pp. 21-51. doi : 10.5802/ambp.353. https://ambp.centre-mersenne.org/articles/10.5802/ambp.353/

[1] T. Banica Symmetries of a generic coaction, Math. Ann., Volume 314 (1999) no. 4, pp. 763-780 | DOI

[2] I. Charlesworth; B. Nelson; P. Skoufranis Combinatorics of bi-freeness with amalgamation, Comm. Math. Phys., Volume 338 (2015), pp. 801-847 | DOI

[3] I. Charlesworth; B. Nelson; P. Skoufranis On two-faced families of noncommutative random variables, Canad. J. Math., Volume 67 (2015) no. 6, pp. 1290-1325 | DOI

[4] S. Curran Quantum exchangeable sequences of algebras, Indiana Univ. Math. J., Volume 58 (2009) no. 3, pp. 1097-1125 | DOI

[5] K.J. Dykema; C. Köstler; J.D. Williams Quantum symmetric states on free product C*-algebras (2014) (http://arxiv.org/abs/1305.7293)

[6] C. Köstler; R. Speicher A noncommutative de Finetti theorem : invariance under quantum permutations is equivalent to freeness with amalgamation, Comm. Math. Phys., Volume 291 (2009) no. 2, pp. 473-490 | DOI

[7] W. Liu A noncommutative De Finetti theorem for boolean independence, J. Funct. Anal., Volume 269 (2015) no. 7, pp. 1950-1994 | DOI

[8] M. Mastnak; A. Nica Double-ended queues and joint moments of left-right canonical operators on full Fock space, Internat. J. Math., Volume 26 (2014) no. 2 (1550016)

[9] A. Nica; R. Speicher Lectures on the combinatorics of free probability, Lecture note series, 335, London Mathematical Society, 2006

[10] R. Speicher Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc., 627, AMS, 1998

[11] D.V. Voiculescu Free probability for pairs of faces II : 2-variables bi-free R-transform and systems with rank 1 commutation (2013) (http://arxiv.org/abs/1308.2035)

[12] D.V. Voiculescu Free probability for pairs of faces I, Comm. Math. Phys., Volume 332 (2014) no. 3, pp. 955-980 | DOI

[13] S. Wang Quantum symmetry groups of finite spaces, Comm. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | DOI

[14] S.L. Woronowicz Compact quantum groups, Symétries quantiques (Les Houches, 1995) (1998), pp. 845-884

Cited by Sources: