Formule des genres pour le noyau sauvage étale
Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 1, pp. 1-20.

Let M/F be a Galois extension of number fields with Galois group G and p an odd prime. We give an explicit description of the kernel and cokernel of the natural map on étale wild kernels (WK 2i-2 ét M) G WK 2i-2 ét F.

Publié le :
DOI : 10.5802/ambp.352
Classification : 11R70, 11R34, 19F27
Mots clés : $K$-theory, Galois cohomology, étale wild kernel

Hassan Asensouyis 1

1 Département de Mathématiques et Informatique Université Moulay Ismail B.P 11201 Zitoune 50000 Meknès, Morocco
@article{AMBP_2016__23_1_1_0,
     author = {Hassan Asensouyis},
     title = {Formule des genres pour le noyau sauvage \'etale},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--20},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {23},
     number = {1},
     year = {2016},
     doi = {10.5802/ambp.352},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.352/}
}
TY  - JOUR
AU  - Hassan Asensouyis
TI  - Formule des genres pour le noyau sauvage étale
JO  - Annales mathématiques Blaise Pascal
PY  - 2016
SP  - 1
EP  - 20
VL  - 23
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.352/
DO  - 10.5802/ambp.352
LA  - fr
ID  - AMBP_2016__23_1_1_0
ER  - 
%0 Journal Article
%A Hassan Asensouyis
%T Formule des genres pour le noyau sauvage étale
%J Annales mathématiques Blaise Pascal
%D 2016
%P 1-20
%V 23
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.352/
%R 10.5802/ambp.352
%G fr
%F AMBP_2016__23_1_1_0
Hassan Asensouyis. Formule des genres pour le noyau sauvage étale. Annales mathématiques Blaise Pascal, Tome 23 (2016) no. 1, pp. 1-20. doi : 10.5802/ambp.352. https://ambp.centre-mersenne.org/articles/10.5802/ambp.352/

[1] Hassan Asensouyis; Jilali Assim Codescente pour le noyau sauvage étale, Actes de la Conférence “Fonctions L et Arithmétique” (Publ. Math. Besançon Algèbre Théorie Nr.), Volume 2012/1, Presses Univ. Franche-Comté, Besançon, 2012, pp. 5-17

[2] Mohsen Asghari-Larimi; Abbas Movahhedi Bounds for étale capitulation kernels. II, Ann. Math. Blaise Pascal, Volume 16 (2009) no. 1, pp. 151-163 http://ambp.cedram.org/item?id=AMBP_2009__16_1_151_0 | DOI

[3] Jilali Assim Codescente en K-théorie étale et corps de nombres, Manuscripta Math., Volume 86 (1995) no. 4, pp. 499-518 | DOI

[4] Jilali Assim Analogues étales de la p-tour des corps de classes, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 3, pp. 651-663 http://jtnb.cedram.org/item?id=JTNB_2003__15_3_651_0 | DOI

[5] Jilali Assim; Abbas Movahhedi Galois co-descent in motivic cohomology (Prépublication)

[6] Jilali Assim; Abbas Movahhedi Bounds for étale capitulation kernels, K-Theory, Volume 33 (2004) no. 3, pp. 199-213 | DOI

[7] Jilali Assim; Abbas Movahhedi Norm index formula for the Tate kernels and applications, J. K-Theory, Volume 9 (2012) no. 2, pp. 359-383 | DOI

[8] Algebraic number theory (J. W. S. Cassels; A. Fröhlich, eds.), Proceedings of an instructional conference organized by the London Mathematical Society (a NATO Advanced Study Institute) with the support of the Inter national Mathematical Union., Academic Press, London ; Thompson Book Co., Inc., Washington, D.C., 1967, xviii+366 pages

[9] T. Chinburg; M. Kolster; G. Pappas; V. Snaith Galois structure of K-groups of rings of integers, K-Theory, Volume 14 (1998) no. 4, pp. 319-369 | DOI

[10] William G. Dwyer; Eric M. Friedlander Algebraic and etale K-theory, Trans. Amer. Math. Soc., Volume 292 (1985) no. 1, pp. 247-280 | DOI

[11] Ralph Greenberg A note on K 2 and the theory of Z p -extensions, Amer. J. Math., Volume 100 (1978) no. 6, pp. 1235-1245 | DOI

[12] Ross A.W. Griffiths A genus formula for étale Hilbert kernels in a cyclic p-power extension, McMaster University, Canada (2005) (Ph. D. Thesis)

[13] Bruno Kahn Descente galoisienne et K 2 des corps de nombres, K-Theory, Volume 7 (1993) no. 1, pp. 55-100 | DOI

[14] M. Kolster; A. Movahhedi Galois co-descent for étale wild kernels and capitulation, Ann. Inst. Fourier (Grenoble), Volume 50 (2000) no. 1, pp. 35-65 | DOI

[15] Manfred Kolster An idelic approach to the wild kernel, Invent. Math., Volume 103 (1991) no. 1, pp. 9-24 | DOI

[16] Manfred Kolster Remarks on étale K-theory and Leopoldt’s conjecture, Séminaire de Théorie des Nombres, Paris, 1991–92 (Progr. Math.), Volume 116, Birkhäuser Boston, Boston, MA, 1993, pp. 37-62 | DOI

[17] Manfred Kolster K-theory and arithmetic, Contemporary developments in algebraic K-theory (ICTP Lect. Notes, XV), Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2004, p. 191-258 (electronic)

[18] John Milnor Introduction to algebraic K-theory, Princeton University Press, Princeton, N.J. ; University of Tokyo Press, Tokyo, 1971, xiii+184 pages (Annals of Mathematics Studies, No. 72)

[19] A. Movahhedi; Thong Nguyen Quang Do Sur l’arithmétique des corps de nombres p-rationnels, Séminaire de Théorie des Nombres, Paris 1987–88 (Progr. Math.), Volume 81, Birkhäuser Boston, Boston, MA, 1990, pp. 155-200

[20] Thong Nguyen Quang Do Analogues supérieurs du noyau sauvage, Sém. Théor. Nombres Bordeaux (2), Volume 4 (1992) no. 2, pp. 263-271 http://jtnb.cedram.org/item?id=JTNB_1992__4_2_263_0 | DOI

[21] Thong Nguyen Quang Do Théorie d’Iwasawa des noyaux sauvages étales d’un corps de nombres, Théorie des nombres, Années 1998/2001 (Publ. Math. UFR Sci. Tech. Besançon), Univ. Franche-Comté, Besançon, 2002, 9 pages

[22] Peter Schneider Über gewisse Galoiscohomologiegruppen, Math. Z., Volume 168 (1979) no. 2, pp. 181-205 | DOI

[23] C. Soulé K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math., Volume 55 (1979) no. 3, pp. 251-295 | DOI

[24] John Tate Relations between K 2 and Galois cohomology, Invent. Math., Volume 36 (1976), pp. 257-274 | DOI

[25] David Vauclair Noyaux de Tate et capitulation, J. Number Theory, Volume 128 (2008) no. 3, pp. 619-638 | DOI

[26] Vladimir Voevodsky On motivic cohomology with Z/l-coefficients, Ann. of Math. (2), Volume 174 (2011) no. 1, pp. 401-438 | DOI

Cité par Sources :