We give norm inequalities for some classical operators in amalgam spaces and in some subspaces of Morrey space.
Nous établissons des inégalités en norme pour certains opérateurs classiques dans les amalgames et certains sous-espaces d’espaces de Morrey.
Keywords: Amalgams spaces, fractional maximal operator, Riesz potential, Hilbert transform
Mots-clés : Espace amalgame, operateur maximal fractionnaire, potentiel de Riesz, transformation de Hilbert
Justin Feuto 1
@article{AMBP_2014__21_2_21_0, author = {Justin Feuto}, title = {Norm inequalities in some subspaces of {Morrey} space}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {21--37}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {2}, year = {2014}, doi = {10.5802/ambp.340}, mrnumber = {3322613}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.340/} }
TY - JOUR AU - Justin Feuto TI - Norm inequalities in some subspaces of Morrey space JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 21 EP - 37 VL - 21 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.340/ DO - 10.5802/ambp.340 LA - en ID - AMBP_2014__21_2_21_0 ER -
%0 Journal Article %A Justin Feuto %T Norm inequalities in some subspaces of Morrey space %J Annales mathématiques Blaise Pascal %D 2014 %P 21-37 %V 21 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.340/ %R 10.5802/ambp.340 %G en %F AMBP_2014__21_2_21_0
Justin Feuto. Norm inequalities in some subspaces of Morrey space. Annales mathématiques Blaise Pascal, Volume 21 (2014) no. 2, pp. 21-37. doi : 10.5802/ambp.340. https://ambp.centre-mersenne.org/articles/10.5802/ambp.340/
[1] A note on Riesz potentials, Duke Math. J., Volume 42 (1975), p. 765-778. | DOI | MR | Zbl
[2] Nonlinear potential analysis on Morrey spaces and their capacities, Indiana University Mathematics Journal, Volume 53 (2004), p. 1629-1663. | DOI | MR | Zbl
[3] Product-convolution operators and mixed-norm spaces, Trans. AMS, Volume 263 (1981), p. 309-341. | DOI | MR | Zbl
[4] Morrey spaces and Hardy-Littlewood maximal function, Rend. Math., Volume 7 (1987), p. 273-279. | MR | Zbl
[5] Riesz potentials and amalgams, Ann. Inst. Fourier, Grenoble, Volume 49 (1999), pp. 1345-1367 | DOI | Numdam | MR | Zbl
[6] Wiener amalgam spaces on locally compact groups (1989) (Masters Thesis, University of Vienna)
[7] On some subspaces of Morrey-Sobolev spaces and boundedness of Riesz integrals, Ann. Pol. Math., Volume 108 (2013), pp. 133-153 | DOI | MR | Zbl
[8] Regularity in Morrey spaces of strong solutions to nondivergence elliptic equations with VMO coefficients, Georgian Math. J., Volume 5 (1998), p. 425-440. | DOI | MR | Zbl
[9] A characterization of Wiener’s algebra on locally compact groups, Arch. Math. (Basel), Volume 29 (1977), pp. 136-140 | DOI | MR | Zbl
[10] Banach convolution algebras of Wiener’s type, Functions, Series, Operators, Proc. Conf. Budapest, 38, Colloq. Math. Soc. János Bolyai (1980), pp. 509-524 | MR | Zbl
[11] Espaces de fonctions á moyenne fractionnaire intgrables sur les groupes localement compacts, Afr. Mat., Volume 15 (2003), pp. 73-91 | MR | Zbl
[12] Integrable fractional mean functions on spaces of homogeneous type, Afr. Diaspora J. Math., Volume 9 (2010), pp. 8-30 | MR | Zbl
[13] Étude d’une classe d’espaces de fonctions contenant les espaces de Lorentz, Afr. Mat., Volume 1 (1988), pp. 29-50 | MR | Zbl
[14] Amalgams of and , Bull. Amer. Math. Soc, Volume 13 (1985), pp. 1-21 | DOI | MR | Zbl
[15] Weighted norm inequalities and related topics, 116, North-Holland Math. Stud., 1985 | MR | Zbl
[16] Equivalence of norms of Riesz potential and fractional maximal function in Morrey-type spaces, Preprint, Institute of Mathematics, AS CR, Prague. (2008), pp. 7-14 | MR
[17] Modern Fourier analysis, 250, Springer, New York, second edition, 2009 | MR | Zbl
[18] Harmonic analysis on amalgams of and , J. London Math. Soc., Volume 10 (1975), pp. 295-305 | DOI | MR | Zbl
[19] Weighted Norm Inequalities for Fractional Integrals, Trans. of the AMS, Volume 192 (1974), pp. 261-274 | DOI | MR | Zbl
[20] Weakly differentiable functions, Springer-Verlag, 1989 | MR | Zbl
Cited by Sources: