[Les nombres de Hurwitz monotones et l’intégrale HCIZ]
Nous démontrons que la convergence de l’énergie libre de l’intégrale HCIZ dans le plan complexe est équivalente à la non-nullité de l’intégrale HCIZ autour de . Notre approche est basée sur un modèle combinatoire pour les coefficients de Maclaurin de l’intégrale HCIZ et sur des méthodes classiques d’analyse complexe.
In this article, we prove that the complex convergence of the HCIZ free energy is equivalent to the non-vanishing of the HCIZ integral in a neighbourhood of . Our approach is based on a combinatorial model for the Maclaurin coefficients of the HCIZ integral together with classical complex-analytic techniques.
Keywords: Matrix models, Hurwitz numbers, asymptotic analysis
Mot clés : Modèles matriciels, nombres de Hurwitz, analyse asymptotique
I. P. Goulden 1 ; Mathieu Guay-Paquet 2 ; Jonathan Novak 3
@article{AMBP_2014__21_1_71_0, author = {I. P. Goulden and Mathieu Guay-Paquet and Jonathan Novak}, title = {Monotone {Hurwitz} {Numbers} and the {HCIZ} {Integral}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {71--89}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {21}, number = {1}, year = {2014}, doi = {10.5802/ambp.336}, mrnumber = {3248222}, zbl = {1296.05202}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.336/} }
TY - JOUR AU - I. P. Goulden AU - Mathieu Guay-Paquet AU - Jonathan Novak TI - Monotone Hurwitz Numbers and the HCIZ Integral JO - Annales mathématiques Blaise Pascal PY - 2014 SP - 71 EP - 89 VL - 21 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.336/ DO - 10.5802/ambp.336 LA - en ID - AMBP_2014__21_1_71_0 ER -
%0 Journal Article %A I. P. Goulden %A Mathieu Guay-Paquet %A Jonathan Novak %T Monotone Hurwitz Numbers and the HCIZ Integral %J Annales mathématiques Blaise Pascal %D 2014 %P 71-89 %V 21 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.336/ %R 10.5802/ambp.336 %G en %F AMBP_2014__21_1_71_0
I. P. Goulden; Mathieu Guay-Paquet; Jonathan Novak. Monotone Hurwitz Numbers and the HCIZ Integral. Annales mathématiques Blaise Pascal, Tome 21 (2014) no. 1, pp. 71-89. doi : 10.5802/ambp.336. https://ambp.centre-mersenne.org/articles/10.5802/ambp.336/
[1] Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not., Volume 2003 (2003) no. 17, pp. 953-982 | DOI | MR | Zbl
[2] Asymptotics of unitary and orthogonal matrix integrals, Adv. Math., Volume 222 (2009) no. 1, pp. 172-215 | DOI | MR | Zbl
[3] Integration with respect to the Haar measure on unitary, orthogonal and symplectic group, Comm. Math. Phys., Volume 264 (2006) no. 3, pp. 773-795 | DOI | MR | Zbl
[4] Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math., Volume 146 (2001) no. 2, pp. 297-327 | DOI | MR | Zbl
[5] Universality of local spectral statistics of random matrices, Bull. Amer. Math. Soc. (N.S.), Volume 49 (2012) no. 3, pp. 377-414 | DOI | MR | Zbl
[6] Toda equations and piecewise polynomiality for mixed double Hurwitz numbers (Submitted)
[7] Monotone Hurwitz numbers in genus zero, Canad. J. Math., Volume 65 (2013) no. 5, pp. 1020-1042 | DOI | MR | Zbl
[8] Polynomiality of monotone Hurwitz numbers in higher genera, Adv. Math., Volume 238 (2013), pp. 1-23 | DOI | MR | Zbl
[9] Combinatorial enumeration, Dover Publications Inc., Mineola, NY, 2004, pp. xxvi+569 (With a foreword by Gian-Carlo Rota, Reprint of the 1983 original) | MR | Zbl
[10] A self-interacting random walk on the symmetric group (In preparation)
[11] Large deviations and stochastic calculus for large random matrices, Probab. Surv., Volume 1 (2004), pp. 72-172 | DOI | MR | Zbl
[12] Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891) no. 1, pp. 1-60 | DOI | MR
[13] The planar approximation. II, J. Math. Phys., Volume 21 (1980) no. 3, pp. 411-421 | DOI | MR | Zbl
[14] An algebro-geometric proof of Witten’s conjecture, J. Amer. Math. Soc., Volume 20 (2007) no. 4, pp. 1079-1089 | DOI | MR | Zbl
[15] Jucys-Murphy elements and unitary matrix integrals, Int. Math. Res. Not. IMRN, Volume 2013 (2013) no. 2, pp. 362-397 | MR
[16] Jucys-Murphy elements and the unitary Weingarten function, Noncommutative harmonic analysis with applications to probability II (Banach Center Publ.), Volume 89, Polish Acad. Sci. Inst. Math., Warsaw, 2010, pp. 231-235 | DOI | MR | Zbl
[17] Toda equations for Hurwitz numbers, Math. Res. Lett., Volume 7 (2000) no. 4, pp. 447-453 | DOI | MR | Zbl
[18] The Toda equations and the Gromov-Witten theory of the Riemann sphere, Lett. Math. Phys., Volume 53 (2000) no. 1, pp. 59-74 | DOI | MR | Zbl
[19] Enumerating finite groups of given order, Ann. of Math. (2), Volume 137 (1993) no. 1, pp. 203-220 | DOI | MR | Zbl
[20] The Theory of Functions, Oxford University Press, 1939 | MR
[21] HCIZ integral and 2D Toda lattice hierarchy, Nuclear Phys. B, Volume 634 (2002) no. 3, pp. 417-432 | DOI | MR | Zbl
[22] On some integrals over the unitary group and their large limit, J. Phys. A, Volume 36 (2003) no. 12, pp. 3173-3193 (Random matrix theory) | DOI | MR | Zbl
Cité par Sources :