Some inverse and control problems for fluids
[Quelques problèmes inverses et de contrôles pour les fluides]
Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 1, pp. 101-138.

Ce papier discute quelques problèmes inverses et de contrôle pour des systèmes de type Navier-Stokes. On insiste sur quelques aspects de nature à la fois théorique et numérique ayant menés récemment à des résultats nouveaux : Problèmes inverses géométriques, Contrôlabilité Eulérienne et Lagrangienne, Réduction de tourbillons par optimisation de forme, etc.

This paper deals with some inverse and control problems for the Navier-Stokes and related systems. We will focus on some particular aspects that have recently led to interesting (theoretical and numerical) results: geometric inverse problems, Eulerian and Lagrangian controllability and vortex reduction oriented to shape optimization.

DOI : 10.5802/ambp.323
Classification : 35R30, 76B75, 76D55
Mots clés : Navier-Stokes equations, Euler equations, inverse problems, exact and approximate controllability, Lagrangian controllability, vortex reduction, shape optimization

Enrique Fernández-Cara 1 ; Thierry Horsin 2 ; Henry Kasumba 3

1 Dpto. EDAN University of Sevilla Aptdo. 1160, 41080 Sevilla SPAIN
2 IMath - Ingénierie Mathématique CNAM, 292, rue Saint Martin - case courrier 2D5000 75141 Paris Cedex 03 FRANCE
3 Radon Institute of Industrial and Applied Mathematics Austrian Academy of Sciences Alternbergstrasse 69 A-4040 Linz AUSTRIA
@article{AMBP_2013__20_1_101_0,
     author = {Enrique Fern\'andez-Cara and Thierry Horsin and Henry Kasumba},
     title = {Some inverse and control problems for fluids},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {101--138},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {20},
     number = {1},
     year = {2013},
     doi = {10.5802/ambp.323},
     mrnumber = {3112241},
     zbl = {1290.35325},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.323/}
}
TY  - JOUR
AU  - Enrique Fernández-Cara
AU  - Thierry Horsin
AU  - Henry Kasumba
TI  - Some inverse and control problems for fluids
JO  - Annales mathématiques Blaise Pascal
PY  - 2013
SP  - 101
EP  - 138
VL  - 20
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.323/
DO  - 10.5802/ambp.323
LA  - en
ID  - AMBP_2013__20_1_101_0
ER  - 
%0 Journal Article
%A Enrique Fernández-Cara
%A Thierry Horsin
%A Henry Kasumba
%T Some inverse and control problems for fluids
%J Annales mathématiques Blaise Pascal
%D 2013
%P 101-138
%V 20
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.323/
%R 10.5802/ambp.323
%G en
%F AMBP_2013__20_1_101_0
Enrique Fernández-Cara; Thierry Horsin; Henry Kasumba. Some inverse and control problems for fluids. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 1, pp. 101-138. doi : 10.5802/ambp.323. https://ambp.centre-mersenne.org/articles/10.5802/ambp.323/

[1] G. Alessandrini; E. Beretta; E. Rosset; S. Vessella Optimal stability for inverse elliptic boundary value problems with unknown boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), Volume 29 (2000) no. 4, pp. 755-806 | Numdam | MR | Zbl

[2] C. Alvarez; C. Conca; L. Friz; O. Kavian; J. H. Ortega Identification of immersed obstacles via boundary measurements, Inverse Problems, Volume 21 (2005) no. 5, pp. 1531-1552 | DOI | MR | Zbl

[3] S. Andrieux; A. Ben Abda; M. Jaou On some inverse geometrical problems, Partial differential equation methods in control and shape analysis (Pisa) (Lecture Notes in Pure and Appl. Math.), Volume 188, Dekker, New York, 1997, pp. 11-27 | MR | Zbl

[4] K. J. Arrow; L. Hurwicz; H. Uzawa Studies in linear and non-linear programming, With contributions by H. B. Chenery, S. M. Johnson, S. Karlin, T. Marschak, R. M. Solow. Stanford Mathematical Studies in the Social Sciences, vol. II, Stanford University Press, Stanford, Calif., 1958 | MR | Zbl

[5] M. Badra; F. Caubet; M. Dambrine Detecting an obstacle immersed in a fluid by shape optimization methods, Math. Models Methods Appl. Sci., Volume 21 (2011) no. 10, pp. 2069-2101 | DOI | MR | Zbl

[6] J. A. Bello; E. Fernández-Cara; J. Lemoine; J. Simon The differentiability of the drag with respect to the variations of a Lipschitz domain in a Navier-Stokes flow, SIAM J. Control Optim., Volume 35 (1997) no. 2, pp. 626-640 | DOI | MR | Zbl

[7] F. Ben Belgacem; S. M. Kaber On the Dirichlet boundary controllability of the one-dimensional heat equation: semi-analytical calculations and ill-posedness degree, Inverse Problems, Volume 27 (2011) no. 5, pp. 055012, 19 | DOI | MR | Zbl

[8] F. Boyer; F. Hubert; J. Le Rousseau Uniform controllability properties for space/time-discretized parabolic equations, Numer. Math., Volume 118 (2011) no. 4, pp. 601-661 | DOI | MR | Zbl

[9] B. Canuto; O. Kavian Determining coefficients in a class of heat equations via boundary measurements, SIAM J. Math. Anal., Volume 32 (2001) no. 5, p. 963-986 (electronic) | DOI | MR | Zbl

[10] C. Carthel; R. Glowinski; J.-L. Lions On exact and approximate boundary controllabilities for the heat equation: a numerical approach, J. Optim. Theory Appl., Volume 82 (1994) no. 3, pp. 429-484 | DOI | MR | Zbl

[11] A. Bermúdez de Castro Continuum thermomechanics, Progress in Mathematical Physics, 43, Birkhäuser Verlag, Basel, 2005 | MR | Zbl

[12] N. Cindea; E. Fernández-Cara; A. Münch Numerical null controllability of the wave equation through primal method and Carleman estimates, ESAIM: COCV, Volume (to appear, 2013) no. 3 | Zbl

[13] N. Cindea; E. Fernández-Cara; A. Münch; D. De Souza On the numerical null controllability of the Stokes and Navier-Stokes systems, In preparation (2013)

[14] C. Conca; E. L. Schwindt; T. Takahashi On the identifiability of a rigid body moving in a stationary viscous fluid, Inverse Problems, Volume 28 (2012) no. 1, pp. 015005, 22 | DOI | MR | Zbl

[15] J.-M. Coron On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions, ESAIM Contrôle Optim. Calc. Var., Volume 1 (1995/96), p. 35-75 (electronic) | DOI | EuDML | Numdam | MR | Zbl

[16] J.-M. Coron On the controllability of 2-D incompressible perfect fluids, J. Math. Pures Appl. (9), Volume 75 (1996) no. 2, pp. 155-188 | MR | Zbl

[17] J.-M. Coron; A. V. Fursikov Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary, Russian J. Math. Phys., Volume 4 (1996) no. 4, pp. 429-448 | MR | Zbl

[18] A. Doubova; E. Fernández-Cara; M. González-Burgos; J. H. Ortega A geometric inverse problem for the Boussinesq system, Discrete Contin. Dyn. Syst. Ser. B, Volume 6 (2006) no. 6, pp. 1213-1238 | DOI | MR | Zbl

[19] A. Doubova; E. Fernández-Cara; J. H. Ortega On the identification of a single body immersed in a Navier-Stokes fluid, European J. Appl. Math., Volume 18 (2007) no. 1, pp. 57-80 | DOI | MR | Zbl

[20] S. Ervedoza; J. Valein On the observability of abstract time-discrete linear parabolic equations, Rev. Mat. Complut., Volume 23 (2010) no. 1, pp. 163-190 | DOI | MR | Zbl

[21] L. Euler General laws of the motion of fluids, Izv. Ross. Akad. Nauk Mekh. Zhidk. Gaza (1999) no. 6, pp. 26-54 | MR | Zbl

[22] C. Fabre Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems, ESAIM Contrôle Optim. Calc. Var., Volume 1 (1995/96), p. 267-302 (electronic) | DOI | EuDML | Numdam | MR | Zbl

[23] E. Fernández-Cara; S. Guerrero; O. Yu. Imanuvilov; J.-P. Puel Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl. (9), Volume 83 (2004) no. 12, pp. 1501-1542 | DOI | MR | Zbl

[24] E. Fernández-Cara; S. Guerrero; O. Yu. Imanuvilov; J.-P. Puel Some controllability results for the N-dimensional Navier-Stokes and Boussinesq systems with N-1 scalar controls, SIAM J. Control Optim., Volume 45 (2006) no. 1, p. 146-173 (electronic) | DOI | MR | Zbl

[25] E. Fernández-Cara; A. Münch Numerical null controllability of semi-linear 1-D heat equations: fixed point, least squares and Newton methods, Math. Control Relat. Fields, Volume 2 (2012) no. 3, pp. 217-246 | DOI | MR | Zbl

[26] E. Fernández-Cara; A. Münch Strong convergent approximations of null controls for the 1D heat equation, SeMA Journal, Volume 61 (2013) no. 1, pp. 49-78 | DOI | Zbl

[27] A. Fowler Mathematical geoscience, Interdisciplinary Applied Mathematics, 36, Springer, London, 2011 | DOI | MR | Zbl

[28] A. V. Fursikov Exact controllability and feedback stabilization from a boundary for the Navier-Stokes equations, Control of fluid flow (Lecture Notes in Control and Inform. Sci.), Volume 330, Springer, Berlin, 2006, pp. 173-188 | DOI | MR | Zbl

[29] A. V. Fursikov; M. Gunzburger; L. S. Hou; S. Manservisi Optimal control problems for the Navier-Stokes equations, Lectures on applied mathematics (Munich, 1999), Springer, Berlin, 2000, pp. 143-155 | MR | Zbl

[30] A. V. Fursikov; O. Yu. Imanuilov Exact controllability of the Navier-Stokes and Boussinesq equations, Uspekhi Mat. Nauk, Volume 54 (1999) no. 3(327), pp. 93-146 | DOI | MR | Zbl

[31] A. V. Fursikov; O. Yu. Imanuvilov Controllability of evolution equations, Lecture Notes Series, 34, Seoul National University Research Institute of Mathematics Global Analysis Research Center, Seoul, 1996 | MR | Zbl

[32] O. Glass; T. Horsin Approximate Lagrangian controllability for the 2-D Euler equation. Application to the control of the shape of vortex patches, J. Math. Pures Appl. (9), Volume 93 (2010) no. 1, pp. 61-90 | DOI | MR | Zbl

[33] O. Glass; T. Horsin Prescribing the Motion of a Set of Particles in a Three-Dimensional Perfect Fluid, SIAM J. Control Optim., Volume 50 (2012) no. 5, pp. 2726-2742 | DOI | MR | Zbl

[34] R. Glowinski Numerical methods for nonlinear variational problems, Scientific Computation, Springer-Verlag, Berlin, 2008 (Reprint of the 1984 original) | MR | Zbl

[35] R. Glowinski; J.-L. Lions; J. He Exact and approximate controllability for distributed parameter systems, Encyclopedia of Mathematics and its Applications, 117, Cambridge University Press, Cambridge, 2008 (A numerical approach) | DOI | MR | Zbl

[36] M. González-Burgos; S. Guerrero; J.-P. Puel Local exact controllability to the trajectories of the Boussinesq system via a fictitious control on the divergence equation, Commun. Pure Appl. Anal., Volume 8 (2009) no. 1, pp. 311-333 | DOI | MR | Zbl

[37] M. D. Gunzburger Perspectives in flow control and optimization, Advances in Design and Control, 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2003 | MR | Zbl

[38] M. Hinze; K. Kunisch Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim., Volume 40 (2001) no. 3, p. 925-946 (electronic) | DOI | MR | Zbl

[39] Th. Horsin Application of the exact null controllability of the heat equation to moving sets, C. R. Math. Acad. Sci. Paris, Volume 342 (2006) no. 11, pp. 849-852 | DOI | MR | Zbl

[40] Th. Horsin Local exact Lagrangian controllability of the Burgers viscous equation, Ann. Inst. H. Poincaré Anal. Non Linéaire, Volume 25 (2008) no. 2, pp. 219-230 | DOI | EuDML | Numdam | MR | Zbl

[41] O. Yu. Imanuvilov Remarks on exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Calc. Var., Volume 6 (2001), p. 39-72 (electronic) | DOI | EuDML | Numdam | MR | Zbl

[42] V. Isakov Inverse problems for partial differential equations, Applied Mathematical Sciences, 127, Springer, New York, 2006 | MR | Zbl

[43] H. Kasumba; K. Kunisch On free surface PDE constrained shape optimization problems, Appl. Math. Comput., Volume 218 (2012) no. 23, pp. 11429-11450 | DOI | MR | Zbl

[44] H. Kasumba; K. Kunisch Vortex control in channel flows using translational invariant cost functionals, Comput. Optim. Appl., Volume 52 (2012) no. 3, pp. 691-717 | DOI | MR | Zbl

[45] T. Kato On classical solutions of the two-dimensional nonstationary Euler equation, Arch. Rational Mech. Anal., Volume 25 (1967), pp. 188-200 | DOI | MR | Zbl

[46] S. Kindermann Convergence rates of the Hilbert uniqueness method via Tikhonov regularization, J. Optim. Theory Appl., Volume 103 (1999) no. 3, pp. 657-673 | DOI | MR | Zbl

[47] M. V. Klibanov; A. Timonov Carleman estimates for coefficient inverse problems and numerical applications, Inverse and Ill-posed Problems Series, VSP, Utrecht, 2004 | DOI | MR | Zbl

[48] A. B. Krygin Extension of diffeomorphisms that preserve volume, Funkcional. Anal. i Priložen., Volume 5 (1971) no. 2, pp. 72-76 | MR | Zbl

[49] K. Kunisch; B. Vexler Optimal vortex reduction for instationary flows based on translation invariant cost functionals, SIAM J. Control Optim., Volume 46 (2007) no. 4, pp. 1368-1397 | DOI | MR | Zbl

[50] S. Labbé; E. Trélat Uniform controllability of semidiscrete approximations of parabolic control systems, Systems Control Lett., Volume 55 (2006) no. 7, pp. 597-609 | DOI | MR | Zbl

[51] J. L. Lagrange Oeuvres. Tome 14, Gauthier-Villars (Paris), Hildesheim, 1967–1892 (Publiées par les soins de J.-A. Serret [et G. Darboux] ; [Précédé d’une notice sur la vie et les ouvrages de J.-L. Lagrange, par M. Delambre])

[52] S. Micu; E. Zuazua Regularity issues for the null-controllability of the linear 1-d heat equation, Systems Control Lett., Volume 60 (2011) no. 6, pp. 406-413 | DOI | MR | Zbl

[53] A. Münch; E. Zuazua Numerical approximation of null controls for the heat equation: ill-posedness and remedies, Inverse Problems, Volume 26 (2010) no. 8, pp. 085018, 39 | DOI | MR | Zbl

[54] A. A. Samarskii; P. N. Vabishchevich Numerical methods for solving inverse problems of mathematical physics, Inverse and Ill-posed Problems Series, Walter de Gruyter GmbH & Co. KG, Berlin, 2007 | DOI | MR | Zbl

[55] J. San Martín; T. Takahashi; M. Tucsnak A control theoretic approach to the swimming of microscopic organisms, Quart. Appl. Math., Volume 65 (2007) no. 3, pp. 405-424 | MR | Zbl

[56] W. Yan; Y. He; Y. Ma Shape reconstruction of an inverse boundary value problem of two-dimensional Navier-Stokes equations, Internat. J. Numer. Methods Fluids, Volume 62 (2010) no. 6, pp. 632-646 | DOI | MR | Zbl

Cité par Sources :