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Abstract

This paper deals with some inverse and control problems for the Navier-Stokes
and related systems. We will focus on some particular aspects that have recently
led to interesting (theoretical and numerical) results: geometric inverse problems,
Eulerian and Lagrangian controllability and vortex reduction oriented to shape
optimization.

Quelques problèmes inverses et de contrôles pour les fluides
Résumé

Ce papier discute quelques problèmes inverses et de contrôle pour des systèmes
de type Navier-Stokes. On insiste sur quelques aspects de nature à la fois théorique
et numérique ayant menés récemment à des résultats nouveaux : Problèmes inverses
géométriques, Contrôlabilité Eulérienne et Lagrangienne, Réduction de tourbillons
par optimisation de forme, etc.
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1. Introduction. Motivation and general description

The control and the parameter identification of fluids have been the origin
of a lot of interesting work the last decades.

We can mention many challenging motivations of practical interest: the
stabilization of turbulent flows, the control and transport of contamina-
tion, the optimal design of aerodynamic profiles, weather forecasting, etc.

The main purposes of this paper are the following:

• To recall some still unsolved control and inverse problems for the
Navier-Stokes equations and related systems.

• To report on the progress that several researchers have recently
made in this setting.

Of course, it is impossible to cover a significative part of the subject,
but we can indicate a few questions leading to nontrivial mathematical
and numerical problems. For many other questions and results, the reader
is referred for instance to the general references [28, 29, 34, 35, 37, 38]; see
also [5, 14, 49].

The paper is organized as follows.
In Section 2, we first consider some geometric inverse problems concern-

ing the identification of the shape of a body in a viscous fluid; we recall
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some results that provide uniqueness and partial reconstruction from lo-
cal boundary observation. We also consider some (Eulerian) controllability
problems and we recall recent theoretical and numerical results.

In Section 3, we deal with Lagrangian controllability. Specific results
concerning the Euler equations will be given, describing how to settle the
main definition of this notion, as well as a comparison with the control-
lability in Eulerian descriptions. Some works in progress on numerics and
other fluid models will be also discussed.

Finally, in Section 4, the use of translation invariant cost functionals
for the reduction of vortices is investigated in the context of shape opti-
mization of fluid flow domains. Analytical expressions for the shape design
sensitivity involving various functionals are derived. Instationary channel
flow problems with a bump and an obstacle as possible control boundaries
are taken as test examples. Numerical results are provided for relatively
low Reynolds numbers and some conclusions are obtained.

2. Some recent results and open questions concerning the
control of fluids

This Section is devoted to motivate the subject through several nontrivial
problems. In particular, an inverse problem concerning the shape identi-
fication of an immersed body will be considered. Also, the approximate
and null controllability problems for the Navier-Stokes equations with dis-
tributed or boundary controls, locally supported in space, will be recalled.

2.1. An inverse problem

In general terms, the formulation of an inverse problem has the following
structure:

• It is assumed that a system describes the phenomena under study.
In this system, the “natural” data are collected in two sets D0
and D1 and the solution S yields an observation I.

• The data D0 are known. Contrarily, the data D1 are unknown but
we have access to the additional information I. The goal is then
to recover D1 from D0 and I.
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Figure 2.1. The sets Ω and D.

Among all the questions that can be considered for inverse problems of
this kind, let us mention the following:

(1) Uniqueness: Is it true or not that D0 = D′0 and I = I ′ implies
D1 = D′1?

(2) Stability: Is it possible to “estimate” the distance or deviation from
D1 to D′1 in terms of the distance from D0 to D′0 and the distance
from I to I ′?

(3) Reconstruction: Can D1 be (exactly or approximately) computed
from D0 and I?

The reader can find information on the state of the art of this interesting
area for instance in [42, 47, 54] and the references therein.

The inverse problem in this Section is the following. Assume that N = 2
or N = 3 and a regular bounded connected open set Ω ⊂ RN , a non-zero
function ϕ satisfying

ϕ ∈ C1(∂Ω)N ,
∫
∂Ω
ϕ · ndΓ = 0,

a non-empty open set γ ⊂ ∂Ω and a function α = α(x) on γ are given;
see Figure 2.1. Then, the goal is to find a non-empty simply connected
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open set D ⊂⊂ Ω such the stationary Navier-Stokes system
−ν∆u+ (u · ∇)u+∇p = 0, x ∈ Ω \D
∇ · u = 0, x ∈ Ω \D
u = 0, x ∈ ∂D
u = ϕ, x ∈ ∂Ω

(2.1)

possesses a solution (u, p) satisfying

σ(u, p) · n :=
(
−pId.+ ν(∇u+∇uT )

)
· n = α, x ∈ γ.

In other words, we try to find the shape of a body immersed in a
viscous newtonian fluid using as data the velocity trace u|∂Ω and the
normal stresses σ(u, p) · n on γ.

Geometric inverse problems of this kind have been analyzed by sev-
eral authors; see for instance [3, 1, 2, 56]. In particular, the following re-
sults, concerning uniqueness and partial reconstruction, have been proven
in [19]:

Theorem 2.1. Let D1 and D2 be two simply connected open sets satisfy-
ing

Di ⊂⊂ Ω, ∂Di ∈W 2,∞,

let (ui, pi) be the solution to (2.1) for D = Di and let us set αi = σ(ui, pi) ·
n|γ for i = 1, 2. Assume that

α1 = α2 on γ. (2.2)

Then D1 = D2.

The proof of this result follows an argument that can be found for other
problems for instance in [3, 9] and relies on a unique continuation property
of the linearized Navier-Stokes system. More precisely, let D1 and D2 be
given and let us assume that (2.2) holds. Let us consider the open sets
D1 ∪ D2 ∈ D and O0 = Ω \ D1 ∪D2, let O be the unique connected
component of O0 whose boundary contains ∂Ω and let us introduce

v = u1 − u2 and π = p1 − p2.

Then, (v, π) ∈ H1(O)N × L2(O) and, from the already mentioned unique
continuation result, one has

v = 0 in O,
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Figure 2.2. The dashed set is is D3 \D1.

that is to say,
u1 = u2 in O.

For instance, let us assume that D2 \ D1 6= ∅ and let us set D3 =
D2 ∪ ((Ω \D1)∩ (Ω \O)). By hypothesis, D3 \D1 is nonempty. Moreover,
∂(D3 \ D1) = Γ1 ∪ Γ2, where Γ1 = ∂(D3 \ D1) ∩ ∂D1 and Γ2 = ∂(D3 \
D1) ∩ ∂D2 (see Figure 2.2).

The couple (u1, p1) solves the homogeneous Navier-Stokes system inD3\
D1 with zero data on the boundary. Of course, this implies u1 = 0 in
D3 \ D1 and also u1 ≡ 0, which is impossible because u1 = ϕ on ∂Ω.
Therefore, D2 \D1 is the empty set.

We can prove in the same way that the set D1 \D2 is empty. Therefore,
D1 = D2.

Theorem 2.2. Let Di, (ui, pi) and αi = σ(ui, pi) ·n be as in Theorem 2.1
and assume that

D2 = D1 +m := {x+m(x) : x ∈ D1 }

with m = λn + m′ on ∂D1, λ ∈ R, m′ ∈ W 2,∞(RN ;RN ) and m′ · n = 0
(n = n(x) is the unit normal on D1). Let ψ satisfy

ψ ∈ C2(γ)N ,
∫
γ
ψ · ndΓ = 0,
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let us denote by (ψ, π) the solution to the adjoint system

−ν∆ψ − (∇u1)tψ − (u1 · ∇)ψ +∇π = 0, x ∈ Ω \D1

∇ · ψ = 0, x ∈ Ω \D1

ψ = ψ 1γ , x ∈ ∂Ω
ψ = 0, x ∈ ∂D1

and let us assume that ∫
∂D1

∂u1

∂n
· ∂ψ
∂n

dΓ 6= 0.

Then there exists ε > 0 such that, if ‖m‖W 2,∞ ≤ ε, one has

λ = − 〈α2 − α1, ψ 1γ〉

ν

∫
∂D1

∂u1

∂n
· ∂ψ
∂n

dΓ
+ o (‖m‖W 2,∞) . (2.3)

The proof relies on appropriate domain variation techniques, see [6].
Thus, for small ‖m‖W 2,∞ , it is possible to expand up to first order terms
the quantity 〈α2, ψ 1γ〉 in terms of 〈α1, ψ 1γ〉 and the “derivative” of the
mappingm 7→ 〈σ(u, p)·n, ψ 1γ〉. After some computations, this yields (2.3).

We refer to [2] and [18] for other similar results. To our knowledge, the
numerical solution of the inverse problem considered in this Section via
efficient methods remains open.

2.2. Controllability: first results
In the formulation of a controllability problem, we usually find the follow-
ing elements:

• A time-dependent system that describes the considered phenom-
ena. In this system, one or several data can be chosen freely in
a set of constraints; these are the controls. The solution to the
system is called the (time-dependent) state.

• A set of desired final states, i.e., a set where we would like to have
the solution at the final time.

Of course, the goal is to find admissible controls (that is, controls in the
constraint set) such that an associated solution evolves to a desired state.
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Let us be more precise and let us present some first (Eulerian) control-
lability problems and results.

Let Ω be as in Section 2.1 and let us introduce the space
H = { v ∈ L2(Ω)N : ∇ · v = 0 in Ω, v · n = 0 on ∂Ω }.

Assume that the phenomena under study are modelled by the Navier-
Stokes system

ut + (u · ∇)u− ν∆u+∇p = v1ω, (x, t) ∈ QT
∇ · u = 0, (x, t) ∈ QT
u = 0, (x, t) ∈ ΣT

u(x, 0) = u0(x), x ∈ ∂Ω

(2.4)

where T > 0, QT = Ω × (0, T ), ΣT = ∂Ω × (0, T ), ω ⊂ Ω is a (small)
non-empty open subset, v ∈ L2(ω × (0, T ))N and u0 ∈ H.

In (2.4), v is the control and u is the state. It will be said that (2.4)
is approximately controllable at time T if, for any u0, uT ∈ H and any
ε > 0, there exists v ∈ L2(ω × (0, T ))N and an associated solution u ∈
C0
w([0, T ];H) such that

‖u(· , T )− uT ‖L2 ≤ ε.
It will be said that (2.4) is null-controllable at time T if, for any u0 ∈ H,

there exists a control v ∈ L2(ω × (0, T ))N and an associated solution
u ∈ C0

w([0, T ];H) such that
u(x, T ) = 0, x ∈ Ω. (2.5)

At present, the approximate and null controllability of (2.4) are open
questions. However, some partial results are known:

• For Stokes or Stokes-like systems, approximate and null controlla-
bility hold for all ω and T ; see [22, 23].

• For Navier-Stokes systems like (2.4) completed with other bound-
ary conditions, controllability results can also be obtained; see for
instance [15, 30, 17].

• If we keep Dirichlet boundary conditions in (2.4), we can establish
local results. For instance, this means that there exists ε > 0 such
that, for any y0 ∈ H with ‖y0‖L2 ≤ ε, there exist controls and
associated states satisfying (2.5). For results of this kind, see [41,
23, 24].
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Let us now recall the main result in [23]. It deals with the local exact
controllability to the bounded trajectories and, in particular, implies local
null controllability for (2.4).

Theorem 2.3. Let (u, p) be a solution to (2.4) corresponding to the initial
state u0 ∈ L2N−2(Ω)N∩H and the control v = 0. Assume that u ∈ L∞(Ω×
(0, T ))N . There exists ε > 0 with the following property: for any initial u0
satisfying ‖u0 − u0‖L2N−2 ≤ ε, we can find controls v ∈ L2(ω × (0, T ))N
and associated states (u, p) such that

u(x, T ) = u(x, T ), x ∈ Ω. (2.6)

For the proof, we first rewrite (2.6) as a null controllability property
for a modified Navier-Stokes system. Thus, we introduce y := u − u, we
notice that
yt + ((u+ y) · ∇)y + (y · ∇)u− ν∆y +∇π = v1ω, (x, t) ∈ QT
∇ · y = 0, (x, t) ∈ QT
y = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x) := u0(x)− u0(x), x ∈ ∂Ω

(2.7)

and we search for controls v such that

y(x, T ) = 0, x ∈ Ω.

Then, we apply an appropriate inverse mapping theorem and we see
that the task is reduced to prove the null controllability of the Stokes-like
system

yt + (u · ∇)y + (y · ∇)u− ν∆y +∇π = v1ω, (x, t) ∈ QT
∇ · y = 0, (x, t) ∈ QT
y = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ ∂Ω

(2.8)

Finally, we see that the latter is implied by the global Carleman esti-
mates deduced in [23] for the associated adjoint problem. More precisely,
we consider the solutions to the systems

−ϕt − (Dϕ)u− ν∆ϕ+∇q = g(x, t), (x, t) ∈ QT
∇ · ϕ = 0, (x, t) ∈ QT
ϕ = 0, (x, t) ∈ ΣT

ϕ(x, T ) = ϕT (x), x ∈ ∂Ω

(2.9)
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where g ∈ L2(QT )N and ϕT ∈ H and we prove that there exist appropriate
weights ρ, ρ∗, ρ0, ρ1, . . . (that blow up as t→ T−) and a constant C such
that ∫∫

QT

(
ρ−2

2 (|ϕt|2 + |∆ϕ|2) + ρ−2
1 |∇ϕ|

2 + ρ−2
0 |ϕ|

2
)
dx dt

≤ C
(∫∫

QT

ρ−2|g|2 dx dt+
∫∫
ω×(0,T )

ρ−2
∗ |ϕ|2 dx dt

) (2.10)

Then, we deduce the null controllability of (2.9) from (2.10) using a clas-
sical duality argument.

Results of this kind can be proven for other more complex systems. For
instance, the following problem is considered in [24, 36]:

ut + (u · ∇)u− ν∆u+∇p = θ k + v1ω, (x, t) ∈ QT
∇ · u = 0, (x, t) ∈ QT
θt + u · ∇θ − κ∆θ = w1ω, (x, t) ∈ QT
u = 0, θ = 0, (x, t) ∈ ΣT

u(x, 0) = u0(x), θ(x, 0) = θ0(x), x ∈ ∂Ω

where k ∈ RN , κ > 0, v ∈ L2(ω × (0, T ))N and w ∈ L2(ω × (0, T )) are
the controls, u0 ∈ H and θ0 ∈ L2(Ω). This is the so called Boussinesq
system, a common model for the flow of a viscous newtonian fluid where
heat effects are important, see for instance [11, 27].

2.3. Numerical controllability of the Navier-Stokes equations

The numerical analysis of controllability problems for PDEs such as those
above is very involved. The main reason is that the systems are para-
bolic and, consequently, the solutions are regularized at positive time, a
property that is very complicated to reproduce at the numerical level.

Up to now, the approximation of the null control of minimal L2 norm
has focused most of the attention. The first contribution was made by
Carthel, Glowinski and Lions in [10], in the context of the linear heat
equation, where duality arguments were introduced. But the resulting
problem is numerically ill-posed; see [46, 52, 53] and [7], where the de-
gree of ill-posedness is investigated in the boundary situation.

In [50], in the context of approximate controllability, a relaxed observ-
ability inequality is given for general semi-discrete (in space) schemes,
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with the parameter ε of the order of ∆x. The work [8] extends the re-
sults in [50] to the fully discrete situation and proves the convergence
towards a semi-discrete control, as the time step ∆t tends to zero. Let us
also mention [20], where the authors prove that any controllable parabolic
equation, be it discrete or continuous in space, is null-controllable after
time discretization through the application of an appropriate filtering of
the high frequencies. As far as we know, a strong convergence result in
the framework of dual method is still missing.

In some recent papers, the first author and A. Münch have applied dif-
ferent techniques, inspired by the results of A.V. Fursikov and O.Yu. Ima-
nuvilov [31], to the computation of “good” numerical approximations to
null controls of linear and nonlinear parabolic PDEs; see [26, 25]. These
techniques have been extended in [13], where linear problems of the Stokes
kind and also Navier-Stokes systems are considered.

The idea is the following.

• First, assume that y is given in C0([0, T ];H)∩L∞(QT )N and we want
to compute v such that the solution to
yt + ((u+ y) · ∇)y + (y · ∇)u− ν∆y +∇π = v1ω, (x, t) ∈ QT
∇ · y = 0, (x, t) ∈ QT
y = 0, (x, t) ∈ ΣT

y(x, 0) = y0(x), x ∈ ∂Ω

(2.11)

satisfies
y(x, T ) = 0, x ∈ Ω. (2.12)

Then, we introduce the following extremal problem:

Minimize J(y, v) = 1
2

∫∫
QT

ρ2|y|2 dx dt+ 1
2

∫∫
qT

ρ2
∗|v|2 dx dt

Subject to (y, v) ∈ C(y0;T ),
(2.13)

where

C(y0;T ) = { (y, v) : v ∈ L2(ω × (0, T ))N , (y, v) satisfies (2.11), (2.12) }.

Obviously, a solution (y, v) to (2.13) provides at once a “good” (in some
sense optimal) solution to the null controllability problem for (2.8).

It can be seen that (2.13) possesses exactly one solution, given by

y = ρ−2(L∗w +∇σ), v = −ρ−2
0 w|ω×(0,T ),
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Figure 2.3. The domain QT and the mesh. The x, y and
t axis are respectively directed from left to right, from right
to left and upwards. Number of vertices: 1830, number of
elements: 7830, number of degrees of freedom: 12485.

where (w, σ) is the unique solution to the fourth-order variational equality∫∫
QT

(
ρ−2(L∗w +∇σ) · (L∗w′ +∇σ′)+1ωρ−2

0 w · w′
)
dx dt

=
∫

Ω
y0(x) · w′(x, 0) dx ∀(w′, σ′) ∈ Φ; (w, σ) ∈ Φ

(2.14)

and we have introduced the notation L∗w := −wt − ν∆w.
Here, Φ is the Hilbert space defined as follows. First, we introduce the

linear space

Φ0 := { (w, σ) ∈ C2(QT )N+1 : ∇ · w ≡ 0, w = 0 on ΣT }.

Then, we notice that the bilinear form in the left hand side of (2.14) is a
scalar product in Φ0. Finally, we define Φ as the completion of Φ0 for this
scalar product. Thanks to the choice of the weights and, more precisely,
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thanks to (2.10), the right hand side in (2.14) provides a continuous linear
form on Φ and this variational equality is well posed.

Unfortunately, if (w, σ) ∈ Φ, then L∗w + ∇σ must be locally square
integrable in QT . In practice, we see that, for the definition of a finite-
dimensional subspace of Φ, we have to work with functions with second-
order spatial derivatives in L2

loc(QT ) and this is a (maybe too) strong
requirement. This argument shows that it can be a good idea to relax the
constraints

y − ρ−2(L∗w +∇σ) = 0 and ∇ · w = 0

by introducing appropriate multipliers, to rewrite (2.14) as a mixed vari-
ational problem of the form

a((y, w, σ), (y′, w′, σ′)) + b((y′, w′, σ′), (λ, µ)) =
∫

Ω
y0(x) · w′(x, 0) dx

b((y, w, σ), (λ′, µ′)) = 0
∀(y′, w′, σ′, λ′, µ′) ∈ X; (y, w, σ, λ, µ) ∈ X

(with appropriate definitions of a(· , ·), b(· , ·) and X) and, then, consider
finite-dimensional approximations.

Notice that, by integrating by parts with respect to the spatial variables
in b((y′, w′, σ′), (λ, µ)) and b((y, w, σ), (λ′, µ′)), the second-order deriva-
tives disappear. Accordingly, with the help of a standard triangulation of
Ω and the associated usual P`-Lagrange finite element spaces, we obtain
a relatively reasonable linear system.

• Secondly, we can apply a fixed-point algorithm to solve the null con-
trollability problem for (2.7). Obviously, this furnishes a numerical solu-
tion to the problem of exact controllability to the trajectories: how can
we compute a control that drives a solution to (2.4) exactly to u(· , T ) at
time T .

Indeed, to any y ∈ L∞(QT )N we can associate the solution (y, v) to
the corresponding problem (2.13) and then the state y. If y0 is sufficiently
small (that is, if u0 is sufficiently close to u0), it can be expected that the
related iterates converge.

In order to illustrate the situation, let us present the results of an ex-
periment. We solve numerically the exact controllability problem for (2.4)
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with N = 2, Ω = (0, 5)× (0, 1), T = 2, ν = 1, ω = (1, 2)× (0, 1),

y0 = ∇× ψ0, ψ0(x1, x2) ≡ 0.1x2
1x

2
2(5− x1)2(1− x2)2

and
u(x1, x2, t) ≡ (4x2(1− x2), 0)

for all t, i.e., the Poisseuille flow.
The space-time domain and the mesh are displayed in Figure 2.3. We

have used the previous mixed formulation, relying on the standard P2-
Lagrange finite element spaces.

The resulting system has a considerable size. Furthermore, it is read-
ily seen after inspection that the coefficient matrix corresponding to the
bilinear form a(·, ·) can be difficult to invert, since it is only semidefinite
positive in w. Accordingly, the system has been solved with the Arrow-
Hurwicz method [4], that provides very acceptable results, better than a
direct solver. The iterates have been stopped when the relative error of
two consecutive iterates is less than 10−5. The computed control and state
are shown in Figures 2.4–2.5.

The computations have been performed with the FreeFem++ package,
see http://www.freefem.org/ff++. More information, a detailed analy-
sis and other similar numerical experiments will appear in [13].

(a) The x-component (b) The y-component

Figure 2.4. 3D views of the computed control components.

This method can be extended to cover other controllable systems for
which appropriate Carleman estimates are available, including hyperbolic
models, see [12]. It is also possible to adapt the arguments to the boundary
controllability framework.
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(a) The x-component (b) The y-component

Figure 2.5. The computed states for t = 0, 0.8, 1.6. The
minima and maxima are the following: −0.98 and 2.38,
−0.09 and 1.33 and −0.03 and 1.03 for the x-component;
−0.32 and 0.32, −0.09 and 0.09 and −10−4 and 10−4 for
the y-component. This shows that the state is driven to
Poiseuille flow by the action of the computed control.

3. Lagrangian controllability of some fluid models

How to describe the flow of a fluid has been a challenging question along
history for several reasons. A relevant aspect to be taken into account is
the ability to distinguish the motion of the fluid particles while observing
a fluid flooding with different colored components. Another requirement
is motivated by the interest of fishermen observing (ideally motionless)
floats and deducing the motion of the particles from the generated wake.
These considerations were already in the core of the works of Euler [21]
and Lagrange [51].

In the framework of the controllability of ideal fluids, lots of studies
have been devoted to the Eulerian description since the first results of
Coron [16].

Recently, O. Glass and T. Horsin [32] have extended the notion of con-
trollability to the Lagrangian description of two-dimensional perfect fluids;
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the case of three-dimensionnal perfect fluids has also been studied in [33].
Previously, some toy models were investigated in [39] and [40].

In Sections 3.1–3.6, we describe the results obtained by O. Glass and
the second author and we present some work in progress with O. Glass,
O. Kavian and G. Legendre.

3.1. The Lagrangian controllability
Let us conserve the notation in Section 2 and let us consider the Euler
equations

ut + (u · ∇)u+∇p = 0 in QT , (3.1)
∇ · u = 0 in QT , (3.2)
u|t=0 = u0 in Ω. (3.3)

Concerning the boundary conditions, we impose :
u · n = 0 on (∂Ω \ Γ)× (0, T ). (3.4)

Nothing is said on what happens on Γ × (0, T ), the part of the lateral
boundary where one is assumed to act on the fluid.

Let γ0 and γ1 be two smooth Jordan curves in Ω, i.e., two closed curves
smoothly diffeomorphic to S1.
Definition 3.1. Let T > 0 be a given time. We will say that the exact
Lagrangian controllability of (3.1)-(3.4) between γ0 and γ1 holds at time T
if, given a regular initial data u0 satisfying

∇ · u0 = 0 in Ω, (3.5)
u0 · n = 0 on ∂Ω \ Γ, (3.6)

there exists a solution (u, p) to (3.1)-(3.4) such that
φu(t, 0, γ0) ⊂ Ω ∀t ∈ [0, T ], (3.7)

φu(T, 0, γ0) = γ1, (3.8)
up to reparameterization.

In the above defintion, for any given regular vector field X, we denote
by φX = φX(s, t, x) the solution to

∂φ

∂s
(s, t, x) = X(s, φ(s, t, x)), φ(s, s, x) = x,

i.e., the associated Lagrangian coordinate.
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In the sequel, for any Jordan curve γ, int (γ) denotes the bounded con-
nected component of cγ. Our assumptions on the γj allow to consider the
volume of int (γj), which will be denoted |int (γj)|.

Due to the incompressibility condition (3.2), in order to have exact
Lagrangian controllability between γ0 and γ1, it is necessary to have

|int (γ0)| = |int (γ1)|.

Recall that, if one introduces w := ∇× u, then w satisfies

wt + u · ∇w = 0, (3.9)

that is, w is moved by the trajectories of φu. This enabled O. Glass and
T. Horsin in [32] to give counter-examples to the exact Lagrangian con-
trollability that do not respect the condition (3.7). In fact, one can omit
or relax (3.7), but this may imply that the controlled part of the fluid
is allowed to leave Ω which, concerning possible applications to moving
pollutants, would not be admissible.

O. Glass and T. Horsin were thus led to give another definition:

Definition 3.2. We will say that the approximate Lagrangian controlla-
bility of (3.1)-(3.4) holds between γ0 and γ1 at time T and in norm Ck,α

if, for any given u0 as above and any ε > 0, there exists a solution (u, p)
to (3.1)-(3.4) such that (3.7) holds and, moreover,

‖φu(T, 0, γ0)− γ1‖Ck,α(S1) ≤ ε, (3.10)

up to reparameterization.

3.2. The main result in dimension 2
What has been proven in [32] is the following:

Theorem 3.3. Assume that γ0 and γ1 are two Jordan curves that are
homotopic in Ω. Then, for any T > 0, any integer k ≥ 1 and any α ∈
(0, 1), the approximate Lagrangian controllability property between γ0 and
γ1 holds at time T in norm Ck,α.

This result is sharp in the sense that some counter-examples can be
exhibited if one does not relax the condition (3.8).

Remark 3.4. These counter-examples, based on the fact that the vorticity
of u cannot be changed along the characteristics of u that do not leave Ω,
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show that any attempt to perform a Lagrangian and Eulerian controlla-
bility simultaneously is impossible. In practice, this prevents from mixing
the concepts and strategies in this and the previous Section. If one relaxes
the condition (3.7), the work of Coron [16] allows to mix the Eulerian and
Lagrangian controllability viewpoints, provided some control constraints
are imposed to respect Kelvin’s law; but, as noticed above, it seems that
it is crucial for applications to keep (3.7). 2

The main steps of the proof of Theorem 3.3 are the following:

(1) First, to prove this result in the case u0 = 0.

(2) Then, to perform a rescaling argument, combined to the so-called
“return method” introduced by Coron [16], in order to handle non-
zero initial data.

The first step is in fact proven by using potential flows, while the proof
of the second one relies on a formulation of the Euler equation in terms
of the vorticity ω, see [45].

3.3. The main result in dimension 3
In dimension 3, Glass and Horsin partially extended the result of dimen-
sion 2. This is not obvious: on one hand, some technical points used in
the two-dimensional case are not known to be true whereas, on the other
hand, blow-up may occur for the Euler equation in the three-dimensional
case.

In dimension 3, γ0 and γ1 are now taken to be smoothly diffeomorphic
to S2, that is, Jordan surfaces. What is proven in [33] is the following:

Theorem 3.5. Let α ∈ (0, 1) and k ≥ 1 be given. Consider a function
u0 ∈ Ck,α(Ω;R3) satisfying (3.5)-(3.6) and two contractible C∞ embed-
dings of S2 in Ω, denoted γ0 and γ1. Then, for any ε > 0, there exist
T > 0 and a solution (u, p) to (3.1)-(3.4) in QT such that one has (3.7)
and

‖φu(T, 0, γ0)− γ1‖Ck,α(S2) ≤ ε
(up to reparameterization).

The result is again sharp and similar counter-examples to those in di-
mension 2 can be given.
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Notice that, in both dimensions 2 and 3, the solution (u, p) that ascer-
tains the result is smooth. Thus, from classical flow theorems, we have
that φu(T, 0, ·) is a diffeomorphism and φu(T, 0, ·) maps approximately
int (γ0) into int (γ1).

In accordance with (3.9), it becomes clear that one cannot prescribe
(even approximatively) φu(T, 0, γ0) and u(· , T ), that is, it is not possible
to perform Lagrangian and Eulerian controllability at the same time.

3.4. A cornerstone of the proofs
As already mentioned, one of the main steps in the proofs in dimensions 2
and 3 is the case u0 = 0, where potential flows are used.

This means that we look for a solution (u, p) of the Euler equation with
u = ∇ψ, where ψ is a time-depending harmonic map and

p = −ut − |∇ψ|2.

Accordingly, when considering smooth solutions to the Euler equations,
if one wants to prescribe the motion of γ0, it is enough to prescribe the
normal velocity of γ0.

Assume that there exists a C∞ vector field X with compact support
such that ∇ ·X = 0,

φX(t, 0, γ0) ⊂ Ω ∀t ∈ [0, T ]

and
φX(T, 0, γ0) = γ1.

Then, in order to achieve the exact Lagrangian controllability property
between γ0 and γ1 at time T , it is enough to construct a map

ψ : QT 7→ R,

such that

∆xψ = 0 ∀t ∈ [0, T ], (3.11)
∇xψ · ν = X · ν on φ∇xψ(t, 0, γ0) ∀t ∈ [0, T ], (3.12)
∇xψ · n = 0 on ∂Ω \ Γ ∀t ∈ [0, T ], (3.13)∫

Γ
∇xψ · ndσ = 0 ∀t ∈ [0, T ], (3.14)

where ν denotes the unit outwards normal to φ∇xψ(t, 0, γ0).
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This problem is ill-posed in general. In order to palliate this major
difficulty, one may try to relax (3.12) and prove that, for any ε > 0 there
exists ψ such that (3.11), (3.13) and (3.14) hold, together with

‖∇xψ · ν −X · ν‖ ≤ ε on φ∇xψ(t, 0, γ0) ∀t ∈ [0, T ] (3.15)

in an appropriate norm.
This is in fact doable through a compactness argument in time and

the use of the famous Runge’s approximation theorem and leads to the
aforementioned results.

Thus, the proof relies on the existence of the vector field X. To this
purpose, the following is established in [32] and [33]:

Theorem 3.6. Under the hypotheses made on γ0 and γ1, there exists
X ∈ C∞0 (Ω× (0, T );R3) such that

∇x ·X = 0 ∀t ∈ (0, T )

and
φX(T, 0, γ0) = γ1.

The proof is explicit (but intricate) in dimension 2, whereas it relies
on a result by A.B. Krygin [48] in dimension 3 (nevertheless, explicit but
intricate constructions can also be performed in this case).

3.5. Towards numerics
This last section describes the starting point of an ongoing work with
O. Glass, O. Kavian and G. Legendre concerning the effectiveness of La-
grangian controllability by performing numerical simulations.

Though instabilities occur at many steps of the numerics, the key points
are an explicit construction of X satisfying satisfying Theorem 3.6 and an
explicit construction of ψ satisfying (3.11), (3.13), (3.14) and (3.15).

The numerical construction of X is for the moment being a major dif-
ficulty which should be performed by using image processing, while the
numerical construction of ψ can be achieved the following way.

We skip the dependence with respect to time in order to simplify the
exposition and we assume that Γ is a connected component of ∂Ω (this
assumption may be released). In the sequel, γ will denote a Jordan curve or
surface depending on the dimension and the associated outwards normal
vector will be denoted again by ν.
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Let us introduce the space
H−1/2
m (Γ) := { v ∈ H−1/2(Γ) : 〈v, 1〉 = 0, v = 0 on ∂Ω \ γ }.

Similarly, we can consider the space H−1/2
m (γ).

We consider the following mapping
Λ : H−1/2

m (Γ) 7→ H−1/2
m (γ)

v 7→ ∇ψ · ν,
where ψ satisfies

∆ψ = 0, x ∈ Ω
∇ψ · n = v, x ∈ ∂Ω.

Then, it can be proven that Λ has a dense image. Moreover, by means
of the Fenchel-Rockefellar duality approach, given a target w ∈ H−1/2

m (γ),
it is possible to find v ∈ H−1/2

m (Γ) of minimal norm such that
‖Λv − w‖−1/2,γ ≤ ε.

3.6. Extension to other models
In a work in progress, the second author and O. Glass have been able to
extend Theorems 3.3 and 3.5 to the quasi-static Stokes equations

−∆u+∇p = 0, (x, t) ∈ Ω× (0, T )
∇ · u = 0, (x, t) ∈ Ω× (0, T )
u = 0, (x, t) ∈ (∂Ω \ Γ)× (0, T )∫

Γ
u · ndσ = 0 ∀t ∈ [0, T ].

This model can be viewed as a good approximation of the Navier-Stokes
equations in the situation of a very low Reynolds number and has been
used in the framework of controllability in [55].

4. Vortex control of instationary channel flows using trans-
lation invariant cost functionals

Apart from solving controllability problems, there are other ways to con-
trol the behavior of a fluid. A very appropriate strategy is optimal control.
This relies on the introduction of a cost functional (that depends on the
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control and the state) and a family of constraints and the search of a
control-state pair that minimizes the cost in the associated admissible set.

A particular and very important case is found when we investigate
geometric vortex reduction in a flow.

The quantification of a “vortex” is still an issue that is not completely
settled. Accordingly, we deal in this Section with the choice of an appropri-
ate cost functional for vortex minimization in a flow field governed by the
time-dependent Navier-Stokes equations. The controls are the parameters
describing the shape of the domain.

A systematic study has been performed in [44] of the optimal shapes
corresponding to the minimization of the three cost functionals

J1(u) = 1
2

∫ T

0

∫
Ω
|u(x, t)− ud(x, t)|2 dx dt,

J2(u) = 1
2

∫ T

0

∫
Ω
|curl u(x, t)|2 dx dt, (4.1)

J3(u) =
∫ T

0

∫
Ω
g3(det ∇u(x, t)) dx dt

for vortex reduction in a flow field governed by stationary incompress-
ible Navier-Stokes equations. Here, ud denotes a given desired flow field
without vortices and g3 ∈ C2(R) is a regularization of the function x 7→
max(0, x) [44]. Striking differences were found for the optimal shapes cor-
responding to the minimization of the previous functionals.

In the current work, we extend this study to flow fields governed by
the instationary incompressible Navier-Stokes equations. A comparison
is made on two particular problems. They consist of the minimization of
vortices in instationary flows in a channel with a bump and a channel with
an obstacle, respectively. For the purpose of minimization, a gradient type
method is used. It relies on the characterization of the shape gradients for
the three functionals in (4.1).
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4.1. Setting of the problem
4.1.1. The state equation

Let Ω ⊂ R2 be a bounded domain with a piecewise regular boundary ∂Ω.
The state equation for the flow is the non-stationary Navier-Stokes system

ut − ν∆u+ (u · ∇)u+∇p = f, (x, t) ∈ QT ,
∇ · u = 0, (x, t) ∈ QT ,
u = g, (x, t) ∈ Γin × (0, T ), (4.2)
u = 0, (x, t) ∈ (Γw ∪ Γf )× (0, T ),
σ(u, p) · n = 0, (x, t) ∈ ΓN × (0, T ), ΓN := Γout,
u(x, 0) = u0(x), x ∈ Ω.

As before, u, p and ν = 1/Re > 0 are the velocity, the pressure and the
kinematic viscosity of the fluid and Re is the Reynolds number of the flow;
u0 is the initial velocity field and f is the density of external forces. We
consider the problems described in Figure 4.1. In both problems, Γf is
used as a control boundary by means of which the shape of Ω is governed.

(a) Problem 1 (b) Problem 2

Figure 4.1. The domains for the test problems

4.1.2. The optimization problems

Our goal is to find the optimal Γf by minimizing the cost functionals,
which depend on (Ω, u). Let Γf be described as a graph associated to the
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curve α: [a, b] 7→ R. This graph is given by

Γf (α) = { (x1, x2) : x1 ∈ [a, b], x2 = α(x1) }

for Problem 1 and

Γf (α) = { (x1, x2) : x1 = α(x2), x2 ∈ [d, e] }

for Problem 2, where a, b, d, and e are given constants. As a consequence,
the admissible family of curves defining Γf (α) for Problem 1 can be defined
as follows:

Uad = {α ∈ C0,1([a, b]) : 0 < αmin ≤ α(x1) ≤ αmax,
α(a) = α0, α(b) = α1, |α′| ≤ L1 a.e in (a, b) }.

In a similar way, we can define Uad for Problem 2.
The optimization problem can be written in the following form:

Find (α∗, u∗, p∗) ∈ G such that

J(Ω(α∗), u(α∗)) ≤ J(Ω(α), u(α)) for all (α, u, p) ∈ G,
(4.3)

where

G := { (α, u, p) : α ∈ Uad, (u, p) is a weak solution to (4.2) }.

4.2. Sensitivity analysis

In this Section we discuss the necessary optimality conditions for (4.3).
More precisely, let D ⊂ R2 be a fixed bounded C1,1 domain such that

Ω ⊂ D. An admissible perturbation of the reference domain Ω is described
by a deformation field

h ∈ Tad := {h ∈ C1,1(D̄) : h|∂D = 0, h|∂Ω\Γf = 0 }

and the family of C1,1 diffeomorphisms Ts : D 7→ D

Ts = Id.+ sh, |s| < τ̃

for some sufficiently small τ̃ . Defining the perturbed domains Ωs = Ts(Ω)
and the perturbed manifolds Γs = Ts(∂Ω), the Eulerian derivative of J
at Ω in the direction h is defined as

dJ(u,Ω)h := lim
s→0+

J(us,Ωs)− J(u,Ω)
s

,

124



Inverse and control problems and fluids

where the (us, ps) satisfy
(us,t, ψs)Qs + ν(∇us,∇ψs)Qs + ((us · ∇)us, ψs)Qs − (ps,∇ · ψs)Qs
−(fs, ψs)Qs − (∇ · us, ξs)Qs + (us(· , 0)− u0,s, ψs(· , 0))Ωs = 0

(4.4)
with (ψs, ξs) ∈ Xs, Qs = Ωs × (0, T ), u0,s = u0|Ωs , fs = f |Ωs and

Xs := L2(I;H1
0 (Ωs))× L2(I;L2

0(Ωs)).
In (4.4), (· , ·)Qs and (· , ·)Ωs respectively denote the usual scalar products
in L2(Qs) and L2(Ωs).

Observe that, at s = 0, (4.4) becomes
(ut, ψ)Q + ν(∇u,∇ψ)Q + ((u · ∇)u, ψ)Q − (p,∇ · ψ)Q − (f, ψ)Q

−(∇ · u, ξ)Q + (u(· , 0)− u0, ψ(· , 0))Ω = 0 (4.5)

which is the weak form of (4.2).

Theorem 4.1. Under appropriate assumptions (see [43] for more details),
one can show that the Eulerian derivatives of the cost functionals J` exist
for ` = 1, 2, 3 and are given by

dJ`(u,Ω)h =
∫

Γf

(∫ T

0
G`(u(x, t), λ(x, t)) dt

)
h(x) · n(x) dΓ,

where
G1 :=

[
ν
∂u

∂n

∂λ

∂n
+ 1

2(u− ud)2
]

G2 :=
[
ν
∂u

∂n

∂λ

∂n
+ 1

2 |∇ × u|
2 − (∇× u)τ · ∂u

∂n

]
G3 :=

[
ν
∂u

∂n

∂λ

∂n
+ g3(det ∇u)− P (u)∂u

∂n

]
and (λ, q) satisfies

(ψt, λ)Q + ν(∇ψ,∇λ)Q + ((ψ · ∇)u + (u · ∇)ψ, λ)Q − (ξ,∇ · λ)Q
+(∇ · ψ, q)Q + (ψ(· , 0), λ(· , 0))Ω = Ai(u, ψ) (4.6)

with A1(u, ψ) = (u − ud, ψ)Q, A2(u, ψ) = (∇ × u,∇ × ψ)Q, A3(u, ψ) =
(g′3(det∇ u), det∇ ψ)Q.

If Γf is parameterized using Bézier curves so that any point x(s) on Γf
is given by

x(s) =
n∑
j=0

bjB
(n)
j (s), s ∈ [0, 1], B

(n)
i (s) =

(
n
i

)
si(1− s)n−i
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Vec Value
0
0.263172
0.526343
0.789515
1.05269
1.31586
1.57903
1.8422
2.10537
2.36855
2.63172
2.89489
3.15806
3.42123
3.6844
3.94758
4.21075
4.47392
4.73709
5.00026

(a) Initial flow, Re = 50, min. and max. speed: 0. and 2.50.

Vec Value
0
0.131634
0.263267
0.394901
0.526534
0.658168
0.789801
0.921435
1.05307
1.1847
1.31634
1.44797
1.5796
1.71124
1.84287
1.9745
2.10614
2.23777
2.3694
2.50104

(b) Optimal shape for J1 and J3, min. and max. speed: 0. and 5.00.

Vec Value
0
0.263172
0.526343
0.789515
1.05269
1.31586
1.57903
1.8422
2.10537
2.36855
2.63172
2.89489
3.15806
3.42123
3.6844
3.94758
4.21075
4.47392
4.73709
5.00026

(c) Optimal shape for J2, min. and max. speed: 0. and 5.00.

Figure 4.2. Initial and optimal domains.

and {bj}nj=0 is a set of n + 1 control points, then one can show that the
shape derivative of J` can be expressed in the form

dJ`(u,Ω)h =
n∑
j=0


n∑
i=0

a`i,jbi,2

−
n∑
i=0

a`i,jbi,1


T (

zj,1
zj,2

)
,

where

a`i,j =
∫ 1

0

[ ∫ T

0
G`(u(x(s), t), p(x(s), t)) dt

]
B

(n)
j (s)B′i

(n)(s) ds,
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and
h(x(s)) =

n∑
j=0

zjB
(n)
j (s).

Therefore, the choice zj,1 = −
∑n
i=0 a

`
i,jbi,2 and zj,2 =

∑n
i=0 a

`
i,jbi,1 pro-

vides a descent direction for the cost functionals J`.

(a) The initial field. (b) The flow in Ωf .

Figure 4.3. Cost function J1. The velocity fields for the
initial and optimal geometry.

4.3. Numerical algorithm and examples
Next, we present the algorithm that we have used to solve the shape
optimization problems. We denote by Ω0, Ωf the initial and final shapes,
respectively.

The domain Ω is deformed according to Algorithm 1.

4.3.1. Test case 1: flow in a channel with a bump

The dimensions of the channel are as follows: −3 < x1 < 3 and −1 <
x2 < 1 with a bump Γf on the upper wall extending from x1 = −0.5 to
x1 = 0.5.
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Algorithm 1 The boundary variation algorithm
1. Choose the initial shape Ω0 and control points b0 =

(b0, b1, . . . , bn), bj ∈ R2.

2. Compute the state system (4.5) and the adjoint system (4.6).

3. Compute the entries of the matrix A = (ai,j).

4. Compute the descent direction z for the control points b via
zx1 = −AT bx2 zx2 = AT bx1 ,

where zx1 = {zj,1}nj=0, zx2 = {zj,2}nj=0, bx1 = {bj,1}nj=0 and
bx2 = {bj,2}nj=0.

4. Update the control points via bk+1 = bk + τzk; the correspond-
ing control boundary and domain are given by xτ (s)k+1 =∑n
j=0(bkj +τzkj )B(n)

j (s) and Ωk+1 = Ω[bk+τzk], respectively. Here,
τ is a positive number.

The parameters defining Uad are α0 = 1, α1 = 1, L1 = 1, αmin(x1) =
0.5 and αmax(x1) = 1.5.

The physical parameters are chosen as follows: Re = 50, g = (5(1 −
x2

2), 0) and f = 0; Γf is constructed using a Bézier polynomial of degree 3.
In other words, we have four control points for the optimization, of which
the two end points are fixed.

The Taylor-Hood elements are used for the approximation of the veloc-
ity and pressure.

At each time step, the discretized equations are solved by a direct
method based on the LU factorization of the matrix. We fix T = 1 and
set ∆t = 0.1. The uncontrolled velocity field obtained after 10 time steps
possesses a vortex in the bump region of the computational domain (Fig-
ure 4.2 (a)). Our goal is reduction/minimization by means of Γf ; ud is
chosen as ud =

(
5(1− x2

2), 0
)
.

Algorithm 1 is initialized with Ω0, depicted in Figure 4.2 (a). The value
of J1 at Ω0 is 0.2872. Algorithm 1 is stopped as soon as the Euclidean
norm |bk+1− bk|2 < 10−4. As expected, after 9 iterates, we obtain an axis-
parallel flow field (see Figure 4.2 (b)). The value of J1 at Ωf is 5.89×10−7.
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(a) The initial field. (b) The flow in Ωf .

Figure 4.4. Cost function J2. The velocity fields for the
initial and optimal geometry.

Next, we turn our attention to the the minimization of J2. A plot of
cost vs. iterates for J2 during the minimization process according to J1
suggested choosing a different domain Ω for the initialization of Algo-
rithm 1. To this end, we initialize Algorithm 1 with the set Ω0 depicted
in Figure 4.2 (b). The flow field computed at this domain is axis-parallel
and the value of J2 is found to be 200.

After 10 iterates, the value of J2 at Ωf (Figure 4.2 (c)) is 197.90, which
gives a relative reduction of 1.05% the initial cost. From Figure 4.2 (c), we
see that although we have reduced the value of J2, a vortex is created. This
result can be explained from the physical viewpoint using the conservation
of energy principle, see [44] for details.

Next, we minimize J3. Algorithm 1 is initialized with Ω0 depicted in
Figure 4.2 (a). Similar results as in the case of J1 are obtained. We note
that the optimal geometry obtained when using J1 depends on the defini-
tion of ud.

These results indicate that the frequently used cost functional J2 does
not seem to be a good candidate for vortex reduction in instationary flows
in channels. In fact, J3 should be preferred to J1 and J2.

129



E. Fernández-Cara, T. Horsin & H. Kasumba

4.3.2. Test case 2: flow in a channel with an obstacle

The parameters defining Uad are α0 = 0.2, α1 = 0.2, L2 = 1, αmin(x2) =
−0.05 and αmax(x2) = 0.45. Γf is constructed using a Bézier polyno-
mial of degree five, i.e., we have 6 control points for the optimization, of
which the two end points are fixed. The resulting computational domains
are then discretized by triangular elements generated by a bi-dimensional
anisotropic mesh generator.

We set g =
(
2(0.25− x2

2), 0
)
, Re=120, f = 0, T = 1 and ∆t = 0.1.

Due to the fact that the cost functionals are non-convex, the initializa-
tion of Algorithm 1 can be important. This information is obtained after
a direct numerical simulation on the three different geometrical config-
urations [44]. The optimization with J1 is initialized with Ω0 shown in
Figure 4.3 (a) and ud =

(
2(0.25− x2

2), 0
)
.

(a) The initial field. (b) The flow in Ωf .

Figure 4.5. Cost function J3. The velocity fields for the
initial and optimal geometry.

In Figure 4.3 (b), we show Ωf and the flow field obtained after 12
iterates. The value of J1 at Ω0 is found to be 0.0447 while the value at Ωf

is 0.0440. The cost has been reduced by 1.66% with respect to the initial
value. A zoom into the region marked by a circle in Figure 4.3(b) indicates
no visual presence of vortices in the final flow field.
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Next, we optimize with J2. Here, Algorithm 1 is initialized with Ω0
depicted in Figure 4.4 (a). In Figure 4.4 (b), we show the domain Ωf

obtained after 15 iterates. The value of J2 at Ω0 is found to be 8.9764,
while that at Ωf is 8.9330. This gives a relative reduction of 0.48% in the
value of the cost. However, small vortices are still visible in the region
marked by two bold circles in Figure 4.4 (b).

Next we optimize with J3. Algorithm 1 is initialized with Ω0 and the
flow is depicted in Figure 4.5 (a).
J3 is found to be 0.7841 and 0.7763 at Ω0 and Ωf (Figure 4.5 (b)),

respectively. This gives a relative reduction of 1% in the value of the cost
after 9 iterates. A further zoom of the final flow field in the region marked
with a circle in Figure 4.5 (b) indicates no visual presence of vortices in
the flow field.

The location of the initial and final Γf are depicted in Figure 4.6.
Considering the fact that J1 was computed with a good choice of ud,

we can summarize that J3 performs better than J1 and J2 as a means to
reduce the vortex in the region behind the obstacle.

Acknowledgements: The first author was partially financed by DGI-
Spain, Grant MTM2010-15992.
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(a)Cost function J1.
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(c) Cost function J3.

Figure 4.6. The initial and final profiles Γf .
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