Statistical models for deformable templates in image and shape analysis
[Modèles statistiques d’atlas déformables pour l’analyse d’images et de formes]
Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 1, pp. 1-35.

Les données de grande dimensions sont de plus en plus fréquemment collectées dans de nombreux domaines d’application. Il devient alors particulièrement important d’être capable d’extraire des caractéristiques significatives de ces bases de données. Le modèle d’atlas déformable (Deformable template model) est un outil maintenant répandu pour atteindre ce but. Cet article présente un panorama des aspects statistiques de ce modèle ainsi que ses généralisations. Nous décrivons les différents cadres mathématiques permettant de prendre en compte des types variés de données et de déformations. Nous rappelons les propriétés théoriques de convergence des estimateurs et des algorithmes permettant l’estimation de ces caractéristiques. Nous terminons cet article par la présentation de quelques résultats publiés utilisant des données réelles.

High dimensional data are more and more frequent in many application fields. It becomes particularly important to be able to extract meaningful features from these data sets. Deformable template model is a popular way to achieve this. This paper is a review on the statistical aspects of this model as well as its generalizations. We describe the different mathematical frameworks to handle different data types as well as the deformations. We recall the theoretical convergence properties of the estimators and the numerical algorithm to achieve them. We end with some published examples.

DOI : 10.5802/ambp.320
Classification : 62H12, 62H30, 62H35
Mots clés : Review paper, Deformable template model, statistical analysis

Stéphanie Allassonnière 1 ; Jérémie Bigot 2 ; Joan Alexis Glaunès 3 ; Florian Maire 4 ; Frédéric J.P. Richard 5

1 CMAP Ecole Polytechnique Route de Saclay 91128 Palaiseau FRANCE
2 Institut de Mathématiques de Toulouse, CNRS UMR 5219 Université de Toulouse 118 route de Narbonne 31062 Toulouse Cedex 9 FRANCE
3 MAP5 Université Paris Descartes, Sorbonne Paris Cité 45 rue des Saints-Pères 75270 Paris Cedex 06 FRANCE
4 ONERA - The French Aerospace Lab F-91761 Palaiseau FRANCE
5 LATP CNRS UMR 7353 Aix Marseille Université Centre de mathématiques et d’informatique 39 rue Frédéric Joliot 13453 Marseille Cedex FRANCE
@article{AMBP_2013__20_1_1_0,
     author = {St\'ephanie Allassonni\`ere and J\'er\'emie Bigot and Joan Alexis Glaun\`es and Florian Maire and Fr\'ed\'eric J.P. Richard},
     title = {Statistical models for deformable templates in image and shape analysis},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--35},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {20},
     number = {1},
     year = {2013},
     doi = {10.5802/ambp.320},
     mrnumber = {3112238},
     zbl = {1294.62121},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/}
}
TY  - JOUR
AU  - Stéphanie Allassonnière
AU  - Jérémie Bigot
AU  - Joan Alexis Glaunès
AU  - Florian Maire
AU  - Frédéric J.P. Richard
TI  - Statistical models for deformable templates in image and shape analysis
JO  - Annales mathématiques Blaise Pascal
PY  - 2013
SP  - 1
EP  - 35
VL  - 20
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/
DO  - 10.5802/ambp.320
LA  - en
ID  - AMBP_2013__20_1_1_0
ER  - 
%0 Journal Article
%A Stéphanie Allassonnière
%A Jérémie Bigot
%A Joan Alexis Glaunès
%A Florian Maire
%A Frédéric J.P. Richard
%T Statistical models for deformable templates in image and shape analysis
%J Annales mathématiques Blaise Pascal
%D 2013
%P 1-35
%V 20
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/
%R 10.5802/ambp.320
%G en
%F AMBP_2013__20_1_1_0
Stéphanie Allassonnière; Jérémie Bigot; Joan Alexis Glaunès; Florian Maire; Frédéric J.P. Richard. Statistical models for deformable templates in image and shape analysis. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 1, pp. 1-35. doi : 10.5802/ambp.320. https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/

[1] Stéphanie Allassonnière; Yali Amit; Alain Trouvé Toward a coherent statistical framework for dense deformable template estimation, JRSS, Volume 69 (2007), pp. 3-29 | MR

[2] Stéphanie Allassonnière; Estelle Kuhn Convergent Stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation, submitted

[3] Stéphanie Allassonnière; Estelle Kuhn Stochastic Algorithm For Bayesian Mixture Effect Template Estimation, ESAIM Probab.Stat., Volume 14 (2010), pp. 382-408 | DOI | Numdam | MR

[4] Stéphanie Allassonnière; Estelle Kuhn; Alain Trouvé Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images, Journal de la Société Française de Statistique, Volume 151(1) (2010), pp. 1-16 | MR

[5] Stéphanie Allassonnière; Estelle Kuhn; Alain Trouvé Bayesian Deformable Models Building via Stochastic Approximation Algorithm: A convergence Study, Bernoulli J., Volume 16 (2010) no. 3, pp. 641-678 | DOI | MR | Zbl

[6] Stéphanie Allassonnière; Alain Trouvé; Laurent Younes; Alan Yuille Anand Rangarajan Geodesic Shotting and Diffeomorphic Matching via Textured Meshes, Proc. of the Energy Minimization Methods for Computer Vision and Pattern Recognition (EMMCVPR 05) (2005), pp. 365-381

[7] John Ashburner A fast diffeomorphic image registration algorithm, NeuroImage, Volume 38 (2007), pp. 95-113 | DOI

[8] J-Y. Audibert; G. Charpiat; O. Faugeras; R. Keriven Imaes Statistics based on Diffeomorphc Matching (2005) (Technical report)

[9] M. F. Beg; M. I. Miller; A. Trouvé; L Younes Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, Int J. Comp. Vis., Volume 61 (2005) no. 2, pp. 139-157 | DOI

[10] J. Bigot; B. Charlier On the consistency of Fréchet means in deformable models for curve and image analysis, Electron. J. Stat., Volume 5 (2011), pp. 1054-1089 | DOI | MR | Zbl

[11] J. Bigot; C. Christophe; S. Gadat Random Action of Compact Lie Groups and Minimax Estimation of a Mean Pattern, Information Theory, IEEE Transactions on, Volume 58 (2012) no. 6, pp. 3509 -3520 | DOI | MR

[12] J. Bigot; S. Gadat A deconvolution approach to estimation of a common shape in a shifted curves model, Ann. Statist., Volume 38 (2010) no. 4, pp. 2422-2464 | DOI | MR | Zbl

[13] J. Bigot; F. Gamboa; M. Vimond Estimation of translation, rotation, and scaling between noisy images using the Fourier-Mellin transform, SIAM J. Imaging Sci., Volume 2 (2009) no. 2, pp. 614-645 | DOI | MR | Zbl

[14] J. Bigot; J.-M. Loubès; M. Vimond Semiparametric estimation of shifts on compact Lie groups for image registration, Probab. Theory Related Fields (2010), pp. 1-49 | MR

[15] Jérémie Bigot; Sébastien Gadat; Jean-Michel Loubes Statistical M-estimation and consistency in large deformable models for image warping, J. Math. Imaging Vision, Volume 34 (2009) no. 3, pp. 270-290 | DOI | MR

[16] O. Cappé; E. Moulines Online EM Algorithm for Latent Data Models, J. R. Statist. Soc.B, Volume 71 (2007), pp. 593-613 | DOI | MR | Zbl

[17] B. P. Carlin; S. Chib Bayesian Model Choice via Markov Chain Monte Carlo, J. R. Statist. Soc.B, Volume 57 (1995), pp. 473-484 | Zbl

[18] G. E. Christensen; R. D. Rabbitt; M. I. Miller Deformable templates using large deformation kinematics, IEEE trans. Image Proc., Volume 5 (1996) no. 10, pp. 1435-1447 | DOI

[19] Bernard Delyon; Marc Lavielle; Éric Moulines Convergence of a stochastic approximation version of the EM algorithm, Ann. Statist., Volume 27 (1999) no. 1, pp. 94-128 | MR | Zbl

[20] Stanley Durrleman; Stéphanie Allassonnière; Sarang Joshi Sparse Adaptive Parameterization of Variability in Image Ensembles, International Journal of Computer Vision, Volume 101(1) (2013), pp. 161-183 | DOI | Zbl

[21] Stanley Durrleman; Xavier Pennec; Alain Trouvé; Nicholas Ayache Statistical Models on Sets of Curves and Surfaces based on Currents, MedIA, Volume 13 (2009) no. 5, pp. 793-808

[22] Stanley Durrleman; Xavier Pennec; Alain Trouvé; Guido Guerig; Nicholas Ayache Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets, proc. of the MICCAI conf. (2009)

[23] James Fishbough; Stanley Durrleman; Guido Guerig Estimation of Smooth Growth Trajectories with Controlled Acceleration from Time Series Shape Data, proc. of the MICCAI conf. (2011)

[24] M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié, Ann. Inst. H.Poincaré, Sect. B, Prob. et Stat., Volume 10 (1948), pp. 235-310 | EuDML | Numdam | MR | Zbl

[25] F. Gamboa; J.-M. Loubes; E. Maza Semi-parametric estimation of shifts, Electron. J. Stat., Volume 1 (2007), pp. 616-640 | DOI | MR | Zbl

[26] C. A. Glasbey; K. V. Mardia A penalized likelihood approach to image warping, J. R. Stat. Soc. Ser. B Stat. Methodol., Volume 63 (2001) no. 3, pp. 465-514 | DOI | MR | Zbl

[27] J. Glaunès; M. Vaillant; M. I. Miller Landmark Matching via Large Deformation Diffeomorphisms on the Sphere, Journal of Mathematical Imaging and Vision, MIA 2002 special, Volume 20 (2004), pp. 179-200 | MR

[28] Joan Glaunès; Sarang Joshi; X. Pennec; S. Joshi Template estimation form unlabeled point set data and surfaces for Computational Anatomy, Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA) (2006), pp. 29-39

[29] Joan Glaunès; Anqi Qiu; Michael Miller; Laurent Younes Large Deformation Diffeomorphic Metric Curve Mapping, International Journal of Computer Vision, Volume 80 (2008) no. 3, pp. 317-336 | DOI

[30] Joan Glaunès; Alain Trouvé; Laurent Younes Diffeomorphic Matching of Distributions: A New Approach for Unlabelled Point-Sets and Sub-Manifolds Matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (2004), pp. 712-718 | DOI

[31] U. Grenander General Pattern Theory, Oxford Science Publications, 1993 | MR | Zbl

[32] U. Grenander; M. I. Miller; A. Srivastana Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR, IEEE Trans. Pattern Anal. Mach. Intell., Volume 20 (1998), pp. 790-802 http://dl.acm.org/citation.cfm?id=284980.284983 | DOI

[33] M. Hachama; A. Desolneux; C. Cuénod; Frédéric J.P. Richard A classifying registration technique for the estimation of enhancement curves of DCE-CT scan sequences, Medical Image Analysis, Volume 14 (2010) no. 2, pp. 185-194 | DOI

[34] M. Hachama; A. Desolneux; Frédéric J.P. Richard A Bayesian Technique For Image Classifying Registration, IEEE Transactions on Image Processing, Volume 21 (2012) no. 9, pp. 4080-4091 | DOI | MR

[35] R Holm; T Ratnanather; A Trouvé; L Younes Soliton Dynamics in Computational Anatomy, Neuroimage, Volume 23 (2004), p. S170-S178 | DOI

[36] S Joshi; M Miller Landmark matching via large deformation diffeomorphisms, IEEE transactions in image processing, Volume 9 (2000) no. 8, pp. 1357-1370 | DOI | MR | Zbl

[37] Sarang Joshi; Brad Davis; Mathieu Jomier; Guido Gerig Unbiased diffeomorphic atlas construction for computational anatomy, Neuroimage, Volume 23 (2004), p. S151-S160 | DOI

[38] Sidonie Lefebvre; Stéphanie Allassonnière; Jérémie Jakubowicz; Thomas Lasne; Éric Moulines Aircraft classification with a low resolution infrared sensor, Machine Vision and Application Journal, Volume 24(1) (2012), pp. 175-186

[39] Marco Lorenzi; Nicholas Ayache; Giovanni B. Frisoni; Xavier Pennec Mapping the effects of Aβ 1-42 levels on the longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields, Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI) (LNCS) (2011), pp. 663-670 http://www.inria.fr/sophia/asclepios/Publications/Marco.Lorenzi/LorenziMICCAI2011.pdf | DOI

[40] Marco Lorenzi; Nicholas Ayache; Xavier Pennec; G. Szekely; H. Hahn Schilds Ladder for the parallel transport of deformations in time series of images, Proceedings of Information Processing in Medical Imaging (IPMI’11) (LNCS), Volume 6801 (2011), pp. 463-474 http://www.inria.fr/sophia/asclepios/Publications/Marco.Lorenzi/IPMI2011-Lorenzi.pdf Honorable Mention (runner-up) for the Erbsmann Award

[41] F. Maire; S. efebvre; E. Moulines; R. Douc An Online Learning Algorithm For Mixture Models Of Deformable Templates, Proc. of the :2012 IEEE Workshop on Machine Learning for Signal Processing (2012)

[42] A. Makadia; K. Daniilidis Rotation recovery from spherical images without correspondences, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 28 (2006) no. 7, pp. 1170-1175 | DOI

[43] Stephen Marsland; Carole Twining Constructing Diffeomorphic Representations for the Groupewise Analysis of Non-Rigid Registrations of Medical Images, IEEE Transactions on Medical Imaging, Volume 23 (2004) | DOI

[44] I Miller; L Younes Group action, diffeomorphism and matching: a general framework, Int. J. Comp. Vis, Volume 41 (2001), pp. 61-84 (Originally published in electronic form in: Proceeding of SCTV 99, http://www.cis.ohio-state.edu/ szhu/SCTV99.html) | DOI | Zbl

[45] W. Park; D. R. Madden; D. N. Rockmore; G. S. Chirikjian Deblurring of class-averaged images in single-particle electron microscopy, Inverse Problems, Volume 26 (2010) no. 3, pp. 035002, 29 | DOI | MR | Zbl

[46] Anqi Qiu; Marilyn Albert; Laurent Younes; Michael I. Miller Time Sequence Diffeomorphic Metric Mapping and Parallel Transport Track Time-Dependent Shape Changes, NeuroImage, Volume 45 (2009), pp. 51-60 | DOI

[47] Frédéric J.P. Richard; Adeline Samson; Charles A. Cuenod A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences, Statistics and Computing, Volume 19 (2009), pp. 465-478 | DOI | MR

[48] Mert Sabuncu; Serdar K. Balci; Polina Golland Discovering Modes of an Image Population through Mixture Modeling, MICCAI, Volume LNCS (2008) no. 5242, pp. 381-389

[49] D’Arcy Wentworth Thompson On growth and form, Cambridge : University Press ; New York : Macmillan, 1915 | MR | Zbl

[50] Alain Trouvé Infinite Dimensional Group Action and Pattern Recognition (1995) (Technical report) | MR | Zbl

[51] C. Twinings; S. Marsland; C. Taylor Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms, British Macine Vision Conference (2002)

[52] A. W. van der Vaart Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 3, Cambridge University Press, Cambridge, 1998 | MR | Zbl

[53] Marc Vaillant; Joan Glaunès; Gary Christensen; Milan Sonka Surface Matching via Currents, Information Processing in Medical Imaging (Lecture Notes in Computer Science), Volume 3565, Springer Berlin / Heidelberg, 2005, pp. 1-5 (10.1007/11505730_32)

[54] Tom Vercauteren; Xavier Pennec; Aymeric Perchant; Nicholas Ayache Diffeomorphic demons: Efficient non-parametric image registration., Neuroimage, Volume 45 (2009), pp. 61-72 | DOI

[55] François-Xavier Vialard; Alain Trouvé A Second-Order Model for Time-Dependent Data Interpolation: Splines on Shape Spaces, STIA Workshop Miccai (2010)

[56] Myriam Vimond Efficient estimation for a subclass of shape invariant models, Ann. Statist., Volume 38 (2010) no. 3, pp. 1885-1912 | DOI | MR | Zbl

Cité par Sources :