[Modèles statistiques d’atlas déformables pour l’analyse d’images et de formes]
Les données de grande dimensions sont de plus en plus fréquemment collectées dans de nombreux domaines d’application. Il devient alors particulièrement important d’être capable d’extraire des caractéristiques significatives de ces bases de données. Le modèle d’atlas déformable (Deformable template model) est un outil maintenant répandu pour atteindre ce but. Cet article présente un panorama des aspects statistiques de ce modèle ainsi que ses généralisations. Nous décrivons les différents cadres mathématiques permettant de prendre en compte des types variés de données et de déformations. Nous rappelons les propriétés théoriques de convergence des estimateurs et des algorithmes permettant l’estimation de ces caractéristiques. Nous terminons cet article par la présentation de quelques résultats publiés utilisant des données réelles.
High dimensional data are more and more frequent in many application fields. It becomes particularly important to be able to extract meaningful features from these data sets. Deformable template model is a popular way to achieve this. This paper is a review on the statistical aspects of this model as well as its generalizations. We describe the different mathematical frameworks to handle different data types as well as the deformations. We recall the theoretical convergence properties of the estimators and the numerical algorithm to achieve them. We end with some published examples.
Mots clés : Review paper, Deformable template model, statistical analysis
Stéphanie Allassonnière 1 ; Jérémie Bigot 2 ; Joan Alexis Glaunès 3 ; Florian Maire 4 ; Frédéric J.P. Richard 5
@article{AMBP_2013__20_1_1_0, author = {St\'ephanie Allassonni\`ere and J\'er\'emie Bigot and Joan Alexis Glaun\`es and Florian Maire and Fr\'ed\'eric J.P. Richard}, title = {Statistical models for deformable templates in image and shape analysis}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--35}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {20}, number = {1}, year = {2013}, doi = {10.5802/ambp.320}, mrnumber = {3112238}, zbl = {1294.62121}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/} }
TY - JOUR AU - Stéphanie Allassonnière AU - Jérémie Bigot AU - Joan Alexis Glaunès AU - Florian Maire AU - Frédéric J.P. Richard TI - Statistical models for deformable templates in image and shape analysis JO - Annales mathématiques Blaise Pascal PY - 2013 SP - 1 EP - 35 VL - 20 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/ DO - 10.5802/ambp.320 LA - en ID - AMBP_2013__20_1_1_0 ER -
%0 Journal Article %A Stéphanie Allassonnière %A Jérémie Bigot %A Joan Alexis Glaunès %A Florian Maire %A Frédéric J.P. Richard %T Statistical models for deformable templates in image and shape analysis %J Annales mathématiques Blaise Pascal %D 2013 %P 1-35 %V 20 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/ %R 10.5802/ambp.320 %G en %F AMBP_2013__20_1_1_0
Stéphanie Allassonnière; Jérémie Bigot; Joan Alexis Glaunès; Florian Maire; Frédéric J.P. Richard. Statistical models for deformable templates in image and shape analysis. Annales mathématiques Blaise Pascal, Tome 20 (2013) no. 1, pp. 1-35. doi : 10.5802/ambp.320. https://ambp.centre-mersenne.org/articles/10.5802/ambp.320/
[1] Toward a coherent statistical framework for dense deformable template estimation, JRSS, Volume 69 (2007), pp. 3-29 | MR
[2] Convergent Stochastic Expectation Maximization algorithm with efficient sampling in high dimension. Application to deformable template model estimation, submitted
[3] Stochastic Algorithm For Bayesian Mixture Effect Template Estimation, ESAIM Probab.Stat., Volume 14 (2010), pp. 382-408 | DOI | Numdam | MR
[4] Bayesian Consistent Estimation in Deformable Models using Stochastic Algorithms: Applications to Medical Images, Journal de la Société Française de Statistique, Volume 151(1) (2010), pp. 1-16 | MR
[5] Bayesian Deformable Models Building via Stochastic Approximation Algorithm: A convergence Study, Bernoulli J., Volume 16 (2010) no. 3, pp. 641-678 | DOI | MR | Zbl
[6] Geodesic Shotting and Diffeomorphic Matching via Textured Meshes, Proc. of the Energy Minimization Methods for Computer Vision and Pattern Recognition (EMMCVPR 05) (2005), pp. 365-381
[7] A fast diffeomorphic image registration algorithm, NeuroImage, Volume 38 (2007), pp. 95-113 | DOI
[8] Imaes Statistics based on Diffeomorphc Matching (2005) (Technical report)
[9] Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, Int J. Comp. Vis., Volume 61 (2005) no. 2, pp. 139-157 | DOI
[10] On the consistency of Fréchet means in deformable models for curve and image analysis, Electron. J. Stat., Volume 5 (2011), pp. 1054-1089 | DOI | MR | Zbl
[11] Random Action of Compact Lie Groups and Minimax Estimation of a Mean Pattern, Information Theory, IEEE Transactions on, Volume 58 (2012) no. 6, pp. 3509 -3520 | DOI | MR
[12] A deconvolution approach to estimation of a common shape in a shifted curves model, Ann. Statist., Volume 38 (2010) no. 4, pp. 2422-2464 | DOI | MR | Zbl
[13] Estimation of translation, rotation, and scaling between noisy images using the Fourier-Mellin transform, SIAM J. Imaging Sci., Volume 2 (2009) no. 2, pp. 614-645 | DOI | MR | Zbl
[14] Semiparametric estimation of shifts on compact Lie groups for image registration, Probab. Theory Related Fields (2010), pp. 1-49 | MR
[15] Statistical M-estimation and consistency in large deformable models for image warping, J. Math. Imaging Vision, Volume 34 (2009) no. 3, pp. 270-290 | DOI | MR
[16] Online EM Algorithm for Latent Data Models, J. R. Statist. Soc.B, Volume 71 (2007), pp. 593-613 | DOI | MR | Zbl
[17] Bayesian Model Choice via Markov Chain Monte Carlo, J. R. Statist. Soc.B, Volume 57 (1995), pp. 473-484 | Zbl
[18] Deformable templates using large deformation kinematics, IEEE trans. Image Proc., Volume 5 (1996) no. 10, pp. 1435-1447 | DOI
[19] Convergence of a stochastic approximation version of the EM algorithm, Ann. Statist., Volume 27 (1999) no. 1, pp. 94-128 | MR | Zbl
[20] Sparse Adaptive Parameterization of Variability in Image Ensembles, International Journal of Computer Vision, Volume 101(1) (2013), pp. 161-183 | DOI | Zbl
[21] Statistical Models on Sets of Curves and Surfaces based on Currents, MedIA, Volume 13 (2009) no. 5, pp. 793-808
[22] Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets, proc. of the MICCAI conf. (2009)
[23] Estimation of Smooth Growth Trajectories with Controlled Acceleration from Time Series Shape Data, proc. of the MICCAI conf. (2011)
[24] Les éléments aléatoires de nature quelconque dans un espace distancié, Ann. Inst. H.Poincaré, Sect. B, Prob. et Stat., Volume 10 (1948), pp. 235-310 | EuDML | Numdam | MR | Zbl
[25] Semi-parametric estimation of shifts, Electron. J. Stat., Volume 1 (2007), pp. 616-640 | DOI | MR | Zbl
[26] A penalized likelihood approach to image warping, J. R. Stat. Soc. Ser. B Stat. Methodol., Volume 63 (2001) no. 3, pp. 465-514 | DOI | MR | Zbl
[27] Landmark Matching via Large Deformation Diffeomorphisms on the Sphere, Journal of Mathematical Imaging and Vision, MIA 2002 special, Volume 20 (2004), pp. 179-200 | MR
[28] Template estimation form unlabeled point set data and surfaces for Computational Anatomy, Proc. of the International Workshop on the Mathematical Foundations of Computational Anatomy (MFCA) (2006), pp. 29-39
[29] Large Deformation Diffeomorphic Metric Curve Mapping, International Journal of Computer Vision, Volume 80 (2008) no. 3, pp. 317-336 | DOI
[30] Diffeomorphic Matching of Distributions: A New Approach for Unlabelled Point-Sets and Sub-Manifolds Matching, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Volume 2 (2004), pp. 712-718 | DOI
[31] General Pattern Theory, Oxford Science Publications, 1993 | MR | Zbl
[32] Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR, IEEE Trans. Pattern Anal. Mach. Intell., Volume 20 (1998), pp. 790-802 http://dl.acm.org/citation.cfm?id=284980.284983 | DOI
[33] A classifying registration technique for the estimation of enhancement curves of DCE-CT scan sequences, Medical Image Analysis, Volume 14 (2010) no. 2, pp. 185-194 | DOI
[34] A Bayesian Technique For Image Classifying Registration, IEEE Transactions on Image Processing, Volume 21 (2012) no. 9, pp. 4080-4091 | DOI | MR
[35] Soliton Dynamics in Computational Anatomy, Neuroimage, Volume 23 (2004), p. S170-S178 | DOI
[36] Landmark matching via large deformation diffeomorphisms, IEEE transactions in image processing, Volume 9 (2000) no. 8, pp. 1357-1370 | DOI | MR | Zbl
[37] Unbiased diffeomorphic atlas construction for computational anatomy, Neuroimage, Volume 23 (2004), p. S151-S160 | DOI
[38] Aircraft classification with a low resolution infrared sensor, Machine Vision and Application Journal, Volume 24(1) (2012), pp. 175-186
[39] Mapping the effects of A levels on the longitudinal changes in healthy aging: hierarchical modeling based on stationary velocity fields, Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI) (LNCS) (2011), pp. 663-670 http://www.inria.fr/sophia/asclepios/Publications/Marco.Lorenzi/LorenziMICCAI2011.pdf | DOI
[40] Schilds Ladder for the parallel transport of deformations in time series of images, Proceedings of Information Processing in Medical Imaging (IPMI’11) (LNCS), Volume 6801 (2011), pp. 463-474 http://www.inria.fr/sophia/asclepios/Publications/Marco.Lorenzi/IPMI2011-Lorenzi.pdf Honorable Mention (runner-up) for the Erbsmann Award
[41] An Online Learning Algorithm For Mixture Models Of Deformable Templates, Proc. of the :2012 IEEE Workshop on Machine Learning for Signal Processing (2012)
[42] Rotation recovery from spherical images without correspondences, IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 28 (2006) no. 7, pp. 1170-1175 | DOI
[43] Constructing Diffeomorphic Representations for the Groupewise Analysis of Non-Rigid Registrations of Medical Images, IEEE Transactions on Medical Imaging, Volume 23 (2004) | DOI
[44] Group action, diffeomorphism and matching: a general framework, Int. J. Comp. Vis, Volume 41 (2001), pp. 61-84 (Originally published in electronic form in: Proceeding of SCTV 99, http://www.cis.ohio-state.edu/ szhu/SCTV99.html) | DOI | Zbl
[45] Deblurring of class-averaged images in single-particle electron microscopy, Inverse Problems, Volume 26 (2010) no. 3, pp. 035002, 29 | DOI | MR | Zbl
[46] Time Sequence Diffeomorphic Metric Mapping and Parallel Transport Track Time-Dependent Shape Changes, NeuroImage, Volume 45 (2009), pp. 51-60 | DOI
[47] A SAEM algorithm for the estimation of template and deformation parameters in medical image sequences, Statistics and Computing, Volume 19 (2009), pp. 465-478 | DOI | MR
[48] Discovering Modes of an Image Population through Mixture Modeling, MICCAI, Volume LNCS (2008) no. 5242, pp. 381-389
[49] On growth and form, Cambridge : University Press ; New York : Macmillan, 1915 | MR | Zbl
[50] Infinite Dimensional Group Action and Pattern Recognition (1995) (Technical report) | MR | Zbl
[51] Measuring Geodesic Distances on the Space of Bounded Diffeomorphisms, British Macine Vision Conference (2002)
[52] Asymptotic statistics, Cambridge Series in Statistical and Probabilistic Mathematics, 3, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[53] Surface Matching via Currents, Information Processing in Medical Imaging (Lecture Notes in Computer Science), Volume 3565, Springer Berlin / Heidelberg, 2005, pp. 1-5 (10.1007/11505730_32)
[54] Diffeomorphic demons: Efficient non-parametric image registration., Neuroimage, Volume 45 (2009), pp. 61-72 | DOI
[55] A Second-Order Model for Time-Dependent Data Interpolation: Splines on Shape Spaces, STIA Workshop Miccai (2010)
[56] Efficient estimation for a subclass of shape invariant models, Ann. Statist., Volume 38 (2010) no. 3, pp. 1885-1912 | DOI | MR | Zbl
Cité par Sources :