Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 197-211.

On donne une borne supérieur du nombre des valeurs propres négatives de l’opérateur de Schrödinger généralisé, cette borne est donnée en fonction d’un nombre fini de cube dyadiques minimaux.

This paper is devoted to give an upper bound of the number of negative eigenvalues of the generalized Schrödinger operator, and this upper bound is given in terms of a finite number of minimal dyadic cubes.

DOI : 10.5802/ambp.310
Classification : 34B09, 34L15, 34L25, 34L05, 35J40, 35P15, 35R06, 35R15, 47A75, 47A07, 47A40, 47A10, 57R40, 58D10
Mots clés : Valeurs propres négatives, Principe de minmax. Cubes dyadiques. Potentiel de Riesz. Résonances.

Mohammed El Aïdi 1

1 Departamento de Matemáticas Universidad Nacional de Colombia. Avenida Carrera 30, numéro 45-03. Bogotá, D.C. Colombia.
@article{AMBP_2012__19_1_197_0,
     author = {Mohammed El A{\"\i}di},
     title = {Un majorant du nombre des valeurs propres n\'egatives correspondantes \`a l{\textquoteright}op\'erateur de {Schr\"odinger} g\'en\'eralis\'e.},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {197--211},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {1},
     year = {2012},
     doi = {10.5802/ambp.310},
     mrnumber = {2978319},
     zbl = {1256.35034},
     language = {fr},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.310/}
}
TY  - JOUR
AU  - Mohammed El Aïdi
TI  - Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 197
EP  - 211
VL  - 19
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.310/
DO  - 10.5802/ambp.310
LA  - fr
ID  - AMBP_2012__19_1_197_0
ER  - 
%0 Journal Article
%A Mohammed El Aïdi
%T Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.
%J Annales mathématiques Blaise Pascal
%D 2012
%P 197-211
%V 19
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.310/
%R 10.5802/ambp.310
%G fr
%F AMBP_2012__19_1_197_0
Mohammed El Aïdi. Un majorant du nombre des valeurs propres négatives correspondantes à l’opérateur de Schrödinger généralisé.. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 197-211. doi : 10.5802/ambp.310. https://ambp.centre-mersenne.org/articles/10.5802/ambp.310/

[1] R.A. Adams Sobolev space, Academics Press, 1975 | Zbl

[2] J. Avron; Bender-Wu Formulas for the Zeeman effect in hydrogen, Ann. Phys. Publ. Mat., Volume 131 (1981), pp. 73-94 | DOI | MR

[3] A. Sá Barreto; M. Zworski Existence of resonances in potential scattering, Commun. Pure Appl. Math., Volume 49 (1996), pp. 1271-1280 | DOI | MR | Zbl

[4] Jean-François Bony; Johannes Sjöstrand Traceformula for resonances in small domains, J. Funct. Anal., Volume 184 (2001) no. 2, pp. 402-418 | DOI | MR

[5] J.F. Bony Minoration du nombre de résonances engendrées par une trajectoire fermée, Commun. Partial Differ. Equations, Volume 27 No.5-6 (2002), pp. 1021-1078 | DOI | MR

[6] N. Burq Lower bounds for shape resonances widths of long rang Schrödinger operators, Am. J..Math., Volume 124, No.4 (2002), pp. 677-735 | DOI | MR

[7] J.M. Combes; P. Duclos; M. Klein; R. Seiler The shape resonance, Comm. Math. Phy., Volume 110 (1987), pp. 215-236 | DOI | MR | Zbl

[8] B.E.J. Dahlberg; E. Trubowitz A remark on two dimensional periodic potentials, Comment. Math. Helvetici, Volume 57 (1982), pp. 130-134 | DOI | MR | Zbl

[9] J. Dolbeault; I. Flores GEOMETRY OF PHASE SPACE AND SOLUTIONS OF SEMILINEAR ELLIPTIC EQUATIONS IN A BALL, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 4073-4087 | DOI | MR

[10] Yu. V. Egorov; M. El Aïdi Spectre négatif d’un opérateur elliptique avec des conditions au bord de Robin, Publ. Mat., Volume 45 (2001) no. 1, pp. 125-148 | DOI | MR

[11] Y.V. Egorov; V.A. Kondratiev Estimates of the negative spectrum of an elliptic operator, in Spectral theory of operators, (Novgorod, 1989), Amer.Math.Soc.Transl.Ser.2, Amer.Math. Soc., Providence, RI, Volume 150 (1992), pp. 129-206 | MR | Zbl

[12] E. Fabes; C. Kenig; R. Serapioni The local regularity of solutions of degenerate elliptic equations, Comm. in P.D.E., Volume 7 (1982), pp. 77-116 | DOI | MR | Zbl

[13] C.L. Fefferman The Uncertainty Principle, Bull. A.M.S (1983), pp. 129-206 | DOI | MR | Zbl

[14] I.M. Glazman Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963. English translation : Daniel Davey and Co., New York, 1966 | MR

[15] Z. Guo; J. Wei Global solution branch and Morse index estimates of a semilinear elliptic equation with super-critical exponent, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 4777-4799 | DOI | MR

[16] E. Harell; B. Simon The mathematical theory of resonances which have exponentially small widths, Duke Math. J., Volume 47 (1980), pp. 845-902 | MR | Zbl

[17] B. Helffer; J. Sjöstrand Résonances en limite semi-classique, Mém. Soc. Math. France (N.S.) (1986) no. 24-25, pp. iv+228 | Numdam | MR | Zbl

[18] P. D. Hislop; I. M. Sigal Shape resonances in quantum mechanics, Differential equations and mathematical physics (Birmingham, Ala., 1986) (Lecture Notes in Math.), Volume 1285, Springer, Berlin, 1987, pp. 180-196 | DOI | MR | Zbl

[19] P.D. Hislop; I.M. Sigal Semiclassical resolvent estimates, Ann. Inst. H.Poincaré Phys. Théor., Volume 51 (1989), pp. 187-198 | Numdam | MR | Zbl

[20] R. Kerman; T. Sawyer The trace inequality and eigenvalue estimates for Schrödinger operators, Ann.Inst.Fourier,Grenoble(36), Volume 4 (1986), pp. 207-228 | DOI | Numdam | MR | Zbl

[21] A. Martin Résonance dans l’approximation de Born Oppenheimer I, Journal of Differ. Eq. (1991), pp. 204-234 | DOI | MR | Zbl

[22] A. Martin Résonance dans l’approximation de Born Oppenheimer II, Commun.Math.Phys., Volume 135 (1991), pp. 517-530 | DOI | MR | Zbl

[23] Vladimir Maz’ya Sobolev spaces with applications to elliptic partial differential equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 342, Springer, Heidelberg, 2011 | DOI | MR

[24] L. Parnovski; A. Sobolev On the Beth-Sommerfeld conjecture for the polyharmonic operator, Duke Math. J., Volume 107 Number 2 (2001), pp. 209-238 | MR

[25] V. Petkov; M. Zworski Breit-Wigner approximation and the distribution of resonances, Comm. Math. Phy., Volume 204 (1999), pp. 329-351 erratum : Comm. Math. Phys. 214 (2000), p. 733-735 | DOI | MR | Zbl

[26] V.N. Popov; M. Skriganov A remark on the spectral structure of the two di- mensional Schrödinger operator with a periodic potential, Zap. Nauchn. Sem. LOMI AN SSSR, Volume 109 (1981), pp. 131-133 | MR | Zbl

[27] Michael Reed; Barry Simon Methods of modern mathematical physics. I, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1980 (Functional analysis) | MR | Zbl

[28] M.A. Shubin Pseudodifferential Operators and Spectral Theory, Second Edition, Springer-Verlag, 2001 | MR | Zbl

[29] M. Skriganov Finiteness of the number of gaps in the spectrum of the mutlidimensional polyharmonic operator with a periodic potential., Mat. Sb (Engl. transl. : Math. USSR Sb. 41 (1982), Volume 113 (1980), pp. 131-145 | MR | Zbl

[30] M. M. Skriganov Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov., Volume 171 (1985), pp. 122 | MR | Zbl

[31] O.A. Veliev. Asymptotic formulas for the eigenvalues of a periodic Schrödinger operator and the Bethe-Sommerfeld conjecture, Functional Anal. Appl., Volume 21 (1987), pp. 87-99 | DOI | MR | Zbl

[32] I. Verbitsky Nonlinear potentials and trace inequalities, The Maz’ya anniversary collection, Vol2 (Rostock, 1998), 323-343, Oper.Theory Adv.Appl., Birkhäuser, Basel,, Volume 110 (1998), pp. 323-343 | MR | Zbl

[33] M. Zworski Resonances in physics in geometry, Notices Amer. Math. Soc., Volume 46 (1999), pp. 319-328 | MR | Zbl

Cité par Sources :