Quantum isometries and group dual subgroups
[Isométries quantiques et duaux de groupes]
Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 1-27.

On étudie les groupes discrets Λ dont les duaux se plongent dans un groupe quantique compact donné, Λ ^G. Dans le cas matriciel GU n + la condition de plongement est équivalente à l’existence d’une application quotient Γ U Λ, où F={Γ U UU n } est une certaine famille de groupes associés à G. On dévéloppe ici un nombre de techniques pour le calcul de F, en partie inspirées pas la classification de Bichon des sous-groupes Λ ^S n + . Ces résultats sont motivés pas la notion de groupe quantique d’isométrie de Goswami, car une variété Riemannienne compacte et connexe ne peut pas avoir des isométries quantiques venant du dual d’un groupe non-abélien.

We study the discrete groups Λ whose duals embed into a given compact quantum group, Λ ^G. In the matrix case GU n + the embedding condition is equivalent to having a quotient map Γ U Λ, where F={Γ U UU n } is a certain family of groups associated to G. We develop here a number of techniques for computing F, partly inspired from Bichon’s classification of group dual subgroups Λ ^S n + . These results are motivated by Goswami’s notion of quantum isometry group, because a compact connected Riemannian manifold cannot have non-abelian group dual isometries.

DOI : 10.5802/ambp.303
Classification : 58J42
Mots clés : Quantum isometry, Diagonal subgroup

Teodor Banica 1 ; Jyotishman Bhowmick 2 ; Kenny De Commer 1

1 Department of Mathematics Cergy-Pontoise University 95000 Cergy-Pontoise FRANCE
2 Department of Mathematics University of Oslo Blindern, N-0315 Oslo NORWAY
@article{AMBP_2012__19_1_1_0,
     author = {Teodor Banica and Jyotishman Bhowmick and Kenny De Commer},
     title = {Quantum isometries and group dual subgroups},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {1--27},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {19},
     number = {1},
     year = {2012},
     doi = {10.5802/ambp.303},
     mrnumber = {2978312},
     zbl = {1250.81057},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.303/}
}
TY  - JOUR
AU  - Teodor Banica
AU  - Jyotishman Bhowmick
AU  - Kenny De Commer
TI  - Quantum isometries and group dual subgroups
JO  - Annales mathématiques Blaise Pascal
PY  - 2012
SP  - 1
EP  - 27
VL  - 19
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.303/
DO  - 10.5802/ambp.303
LA  - en
ID  - AMBP_2012__19_1_1_0
ER  - 
%0 Journal Article
%A Teodor Banica
%A Jyotishman Bhowmick
%A Kenny De Commer
%T Quantum isometries and group dual subgroups
%J Annales mathématiques Blaise Pascal
%D 2012
%P 1-27
%V 19
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.303/
%R 10.5802/ambp.303
%G en
%F AMBP_2012__19_1_1_0
Teodor Banica; Jyotishman Bhowmick; Kenny De Commer. Quantum isometries and group dual subgroups. Annales mathématiques Blaise Pascal, Tome 19 (2012) no. 1, pp. 1-27. doi : 10.5802/ambp.303. https://ambp.centre-mersenne.org/articles/10.5802/ambp.303/

[1] T. Banica Symmetries of a generic coaction, Math. Ann., Volume 314 (1999), pp. 763-780 | DOI | MR | Zbl

[2] T. Banica; J. Bichon Quantum automorphism groups of vertex-transitive graphs of order 11, J. Algebraic Combin., Volume 26 (2007), pp. 83-105 | DOI | MR

[3] T. Banica; D. Goswami Quantum isometries and noncommutative spheres, Comm. Math. Phys., Volume 298 (2010), pp. 343-356 | DOI | MR

[4] T. Banica; A. Skalski Quantum isometry groups of duals of free powers of cyclic groups (to appear)

[5] T. Banica; A. Skalski Quantum symmetry groups of C * -algebras equipped with orthogonal filtrations (to appear)

[6] T. Banica; R. Speicher Liberation of orthogonal Lie groups, Adv. Math., Volume 222 (2009), pp. 1461-1501 | DOI | MR

[7] T. Banica; R. Vergnioux Invariants of the half-liberated orthogonal group, Ann. Inst. Fourier, Volume 60 (2010), pp. 2137-2164 | DOI | Numdam | MR

[8] J. Bhowmick Quantum isometry group of the n-tori, Proc. Amer. Math. Soc., Volume 137 (2009), pp. 3155-3161 | DOI | MR

[9] J. Bhowmick; D. Goswami Quantum group of orientation preserving Riemannian isometries, J. Funct. Anal., Volume 257 (2009), pp. 2530-2572 | DOI | MR

[10] J. Bhowmick; D. Goswami Quantum isometry groups: examples and computations, Comm. Math. Phys., Volume 285 (2009), pp. 421-444 | DOI | MR

[11] J. Bhowmick; D. Goswami Quantum isometry groups of the Podlés spheres, J. Funct. Anal., Volume 258 (2010), pp. 2937-2960 | DOI | MR

[12] J. Bhowmick; A. Skalski Quantum isometry groups of noncommutative manifolds associated to group C * -algebras, J. Geom. Phys., Volume 60 (2010), pp. 1474-1489 | DOI | MR

[13] J. Bichon Free wreath product by the quantum permutation group, Alg. Rep. Theory, Volume 7 (2004), pp. 343-362 | DOI | MR

[14] J. Bichon Algebraic quantum permutation groups, Asian-Eur. J. Math., Volume 1 (2008), pp. 1-13 | DOI | MR

[15] F. Boca Ergodic actions of compact matrix pseudogroups on C * -algebras, Astérisque, Volume 232 (1995), pp. 93-109 | MR | Zbl

[16] B. Collins; P. Śniady Integration with respect to the Haar measure on unitary, orthogonal and symplectic groups, Comm. Math. Phys., Volume 264 (2006), pp. 773-795 | DOI | MR

[17] K. De Commer On projective representations for compact quantum groups, J. Funct. Anal., Volume 260 (2011), pp. 3596-3644 | DOI | MR

[18] Alain Connes Noncommutative geometry, Academic Press Inc., San Diego, CA, 1994 | MR | Zbl

[19] Alain Connes; Matilde Marcolli Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, 55, American Mathematical Society, Providence, RI, 2008 | MR

[20] V. Drinfeld Quantum groups, Proc. ICM Berkeley (1986), pp. 798-820 | MR | Zbl

[21] U. Franz; A. Skalski On idempotent states on quantum groups, J. Algebra, Volume 322 (2009), pp. 1774-1802 | DOI | MR

[22] D. Goswami Quantum symmetries and quantum isometries of compact metric spaces (arxiv:0811.0095)

[23] D. Goswami Rigidity of action of compact quantum groups (arxiv:1106.5107)

[24] D. Goswami Quantum group of isometries in classical and noncommutative geometry, Comm. Math. Phys., Volume 285 (2009), pp. 141-160 | DOI | MR

[25] P. Hajac; T. Masuda Quantum double-torus, C. R. Acad. Sci. Paris Ser. I Math, Volume 327 (1998), pp. 553-558 | DOI | MR | Zbl

[26] H. Huang Faithful compact quantum group actions on connected compact metrizable spaces (arxiv:1202.1175)

[27] B. Das J. Bhowmick; L. Dabrowski Quantum gauge symmetries in noncommutative geometry (arxiv:1112.3622)

[28] D. Goswami J. Bhowmick; A. Skalski Quantum isometry groups of 0-dimensional manifolds, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 901-921 | DOI | MR

[29] F. D’Andrea J. Bhowmick; L. Dabrowski Quantum isometries of the finite noncommutative geometry of the standard model, Comm. Math. Phys., Volume 307 (2011), pp. 101-131 | DOI | MR

[30] M. Jimbo A q-difference analog of U(g) and the Yang-Baxter equation, Lett. Math. Phys., Volume 10 (1985), pp. 63-69 | DOI | MR | Zbl

[31] V.F.R. Jones Planar algebras I (arxiv:math/9909027)

[32] G.I. Kac; V.G. Paljutkin Finite ring groups, Trans. Moscow Math. Soc., Volume 1 (1966), pp. 251-294 | MR | Zbl

[33] Y. Kawada; K. Itô On the probability distribution on a compact group I, Proc. Phys.-Math. Soc. Japan, Volume 22 (1940), pp. 977-998 | MR

[34] J. Liszka-Dalecki; P.M. Soł tan Quantum isometry groups of symmetric groups (to appear)

[35] A.K. Pal A counterexample on idempotent states on compact quantum groups, Lett. Math. Phys., Volume 37 (1996), pp. 75-77 | DOI | MR | Zbl

[36] J. Quaegebeur; M. Sabbe Isometric coactions of compact quantum groups on compact quantum metric spaces (arxiv:1007.0363)

[37] S. Raum Isomorphisms and fusion rules of orthogonal free quantum groups and their complexifications (to appear)

[38] Y. Sekine An example of finite-dimensional Kac algebras of Kac-Paljutkin type, Proc. Amer. Math. Soc., Volume 124 (1996), pp. 1139-1147 | DOI | MR | Zbl

[39] R. Speicher Multiplicative functions on the lattice of noncrossing partitions and free convolution, Math. Ann., Volume 298 (1994), pp. 611-628 | DOI | MR | Zbl

[40] A. Skalski T. Banica; P.M. Soł tan Noncommutative homogeneous spaces: the matrix case, J. Geom. Phys., Volume 62 (2012), pp. 1451-1466 | DOI

[41] S. Curran T. Banica; R. Speicher Classification results for easy quantum groups, Pacific J. Math., Volume 247 (2010), pp. 1-26 | DOI | MR

[42] D. V. Voiculescu; K. J. Dykema; A. Nica Free random variables, CRM Monograph Series, 1, American Mathematical Society, Providence, RI, 1992 (A noncommutative probability approach to free products with applications to random matrices, operator algebras and harmonic analysis on free groups) | MR | Zbl

[43] S. Wang Free products of compact quantum groups, Comm. Math. Phys., Volume 167 (1995), pp. 671-692 | DOI | MR | Zbl

[44] S. Wang Quantum symmetry groups of finite spaces, Comm. Math. Phys., Volume 195 (1998), pp. 195-211 | DOI | MR | Zbl

[45] S. Wang Simple compact quantum groups, I, J. Funct. Anal., Volume 256 (2009), pp. 3313-3341 | DOI | MR

[46] S.L. Woronowicz Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665 | DOI | MR | Zbl

[47] S.L. Woronowicz Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Volume 93 (1988), pp. 35-76 | DOI | MR | Zbl

[48] S.L. Woronowicz Compact quantum groups, “Symétries quantiques”, North-Holland (1998), pp. 845-884 | MR | Zbl

[49] S.-T. Yau Open problems in geometry, Proc. Symp. Pure Math., Volume 54 (1993), pp. 1-28 | DOI | MR | Zbl

Cité par Sources :