Quantitative Isoperimetric Inequalities on the Real Line
[Inégalités Isopérimétriques Quantitatives sur la Droite Réelle]
Annales Mathématiques Blaise Pascal, Tome 18 (2011) no. 2, pp. 251-271.

Dans un récent papier, A. Cianchi, N. Fusco, F. Maggi, et A. Pratelli ont montré que, dans l’espace de Gauss, un ensemble de mesure donnée et de frontière de Gauss presque minimal est nécessairement proche d’être un demi-espace.

En utilisant uniquement des outils géométriques, nous étendons leur résultat au cas des mesures log-concaves symétriques sur la droite réelle. On donne des inegalités isopérimétriques quantitatives optimales et l’on prouve que parmi les ensembles de mesure donnée et d’asyḿétrie donnée (distance à la demi-droite, i.e. distance aux ensembles de périmètre minimal), les intervalles ou les complémentaires d’intervalles ont le plus petit périmètre.

In a recent paper A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli have shown that, in the Gauss space, a set of given measure and almost minimal Gauss boundary measure is necessarily close to be a half-space.

Using only geometric tools, we extend their result to all symmetric log-concave measures on the real line. We give sharp quantitative isoperimetric inequalities and prove that among sets of given measure and given asymmetry (distance to half line, i.e. distance to sets of minimal perimeter), the intervals or complements of intervals have minimal perimeter.

DOI : https://doi.org/10.5802/ambp.299
Classification : 26B15,  49Q15
Mots clés : Inégalités isopérimétriques, Asymétrie, Mesures log-concaves, Mesure Gaussienne
@article{AMBP_2011__18_2_251_0,
     author = {Yohann de Castro},
     title = {Quantitative {Isoperimetric} {Inequalities} on the {Real} {Line}},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {251--271},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {18},
     number = {2},
     year = {2011},
     doi = {10.5802/ambp.299},
     mrnumber = {2896489},
     zbl = {1230.26007},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.299/}
}
Yohann de Castro. Quantitative Isoperimetric Inequalities on the Real Line. Annales Mathématiques Blaise Pascal, Tome 18 (2011) no. 2, pp. 251-271. doi : 10.5802/ambp.299. https://ambp.centre-mersenne.org/articles/10.5802/ambp.299/

[1] L. Ambrosio; N. Fusco; D. Pallara Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000 | MR 1857292 | Zbl 0957.49001

[2] S. G. Bobkov An isoperimetric problem on the line, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 216 (1994) no. Problemy Teorii Veroyatnost. Raspred. 13, p. 5-9, 161 | MR 1327260 | Zbl 0868.60014

[3] C. Borell The Brunn-Minkowski inequality in Gauss space, Invent. Math., Volume 30 (1975) no. 2, pp. 207-216 | Article | MR 399402 | Zbl 0311.60007

[4] A. Cianchi; N. Fusco; F. Maggi; A. Pratelli On the isoperimetric deficit in Gauss space, American Journal of Mathematics, Volume 133 (2011) no. 1, pp. 131-186 | Article | MR 2752937 | Zbl 1219.28005

[5] N. Fusco; F. Maggi; A. Pratelli The sharp quantitative isoperimetric inequality, Ann. of Math. (2), Volume 168 (2008) no. 3, pp. 941-980 | Article | MR 2456887 | Zbl 1187.52009

[6] V. N. Sudakov; B. S. Cirel{'}son Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 41 (1974), p. 14-24, 165 (Problems in the theory of probability distributions, II) | MR 365680 | Zbl 0351.28015