[Tresses à Pau – une introduction]
Dans ce travail, nous décrivons les liaisons historiques entre l’étude de variétés de dimension (notamment, la théorie de nœuds) et l’étude de la topologie des courbes planes complexes, dont l’accent est posé sur le rôle des groupes de tresses et des invariantes du type Alexander (torsions, différents incarnations des polynômes d’Alexander). Nous finissons en présentant un example avec des calculs détaillés.
In this work, we describe the historic links between the study of -dimensional manifolds (specially knot theory) and the study of the topology of complex plane curves with a particular attention to the role of braid groups and Alexander-like invariants (torsions, different instances of Alexander polynomials). We finish with detailed computations in an example.
Keywords: Knots, curves, braid groups, torsion, Alexander polynomial
Mot clés : Nœuds, courbes, torsion, polynômes d’Alexander
Enrique Artal Bartolo 1 ; Vincent Florens 2
@article{AMBP_2011__18_1_1_0, author = {Enrique Artal Bartolo and Vincent Florens}, title = {Braids in {Pau} {\textendash} {An} {Introduction}}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {1--14}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {18}, number = {1}, year = {2011}, doi = {10.5802/ambp.292}, mrnumber = {2830087}, zbl = {1214.14001}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.292/} }
TY - JOUR AU - Enrique Artal Bartolo AU - Vincent Florens TI - Braids in Pau – An Introduction JO - Annales mathématiques Blaise Pascal PY - 2011 SP - 1 EP - 14 VL - 18 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.292/ DO - 10.5802/ambp.292 LA - en ID - AMBP_2011__18_1_1_0 ER -
%0 Journal Article %A Enrique Artal Bartolo %A Vincent Florens %T Braids in Pau – An Introduction %J Annales mathématiques Blaise Pascal %D 2011 %P 1-14 %V 18 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.292/ %R 10.5802/ambp.292 %G en %F AMBP_2011__18_1_1_0
Enrique Artal Bartolo; Vincent Florens. Braids in Pau – An Introduction. Annales mathématiques Blaise Pascal, Tome 18 (2011) no. 1, pp. 1-14. doi : 10.5802/ambp.292. https://ambp.centre-mersenne.org/articles/10.5802/ambp.292/
[1] A lemma on a system of knotted curves, Proc. Nat. Acad. Sci. USA, Volume 9 (1923), pp. 93-95 | DOI
[2] Topological invariants of knots and links, Trans. Amer. Math. Soc., Volume 30 (1928), pp. 275-306 | DOI | MR
[3] Theorie der Zöpfe, Abh. Math. Sem. Univ. Hamburg, Volume 4 (1925), pp. 47-72 | DOI
[4] Monodromía de trenzas de curvas algebraicas planas, Universidad de Zaragoza (2003) (Ph. D. Thesis)
[5] The 3-cuspidal quartic and braid monodromy of degree 4 coverings, Projective varieties with unexpected properties, Walter de Gruyter GmbH & Co. KG, Berlin, 2005, pp. 113-129 | MR | Zbl
[6] A theorem on groups, Math. Ann., Volume 13 (1878) no. 4, pp. 561-565 | DOI | MR
[7] Una suggestiva rappresentazione reale per le curve algebriche piane, Ist. Lombardo, Rend., II. Ser., Volume 66 (1933), pp. 1141-1155 | Zbl
[8] Braid monodromy of algebraic curve, Ann. Math. Blaise Pascal, Volume 18 (2011) no. 1, pp. 141-209 | DOI
[9] Twisted Alexander polynomials of plane algebraic curves, J. Lond. Math. Soc. (2), Volume 76 (2007) no. 1, pp. 105-121 | DOI | MR | Zbl
[10] A divisibility theorem for the Alexander polynomial of a plane algebraic curve, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), Volume 280 (2001) no. Geom. i Topol. 7, p. 146-156, 300 | DOI | MR | Zbl
[11] Über die Topologie des dreidimensionalen Raumes, Math. Ann., Volume 69 (1910) no. 1, pp. 137-168 | DOI | MR
[12] Die beiden Kleeblattschlingen, Math. Ann., Volume 75 (1914) no. 3, pp. 402-413 | DOI | MR
[13] Gruppentheoretische Studien, Math. Ann., Volume 20 (1882) no. 1, pp. 1-44 | DOI | MR
[14] The braid groups, Math. Scand., Volume 10 (1962), pp. 119-126 | MR | Zbl
[15] On the complementary domains of a certain pair of inequivalent knots, Nederl. Akad. Wetensch. Proc. Ser. A. 55 = Indagationes Math., Volume 14 (1952), pp. 37-40 | MR | Zbl
[16] Über die Torsion einer Überdeckung., J. Reine Angew. Math., Volume 173 (1935), pp. 245-254 | DOI | Zbl
[17] Twisted Alexander polynomials and symplectic structures, Amer. J. Math., Volume 130 (2008) no. 2, pp. 455-484 | DOI | MR | Zbl
[18] Basic results on braid groups, Ann. Math. Blaise Pascal, Volume 18 (2011) no. 1, pp. 15-59 | DOI
[19] Ueber Riemann’sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891) no. 1, pp. 1-60 | DOI | MR
[20] On the Fundamental Group of an Algebraic Curve, Amer. J. Math., Volume 55 (1933) no. 1-4, pp. 255-267 | DOI | MR | Zbl
[21] Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology, Volume 38 (1999) no. 3, pp. 635-661 | DOI | MR | Zbl
[22] Twisted knot polynomials: inversion, mutation and concordance, Topology, Volume 38 (1999) no. 3, pp. 663-671 | DOI | MR | Zbl
[23] Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math., Volume 174 (1996) no. 2, pp. 431-442 http://projecteuclid.org/getRecord?id=euclid.pjm/1102365178 | MR | Zbl
[24] Braid monodromy factorizations and diffeomorphism types, Izv. Ross. Akad. Nauk Ser. Mat., Volume 64 (2000) no. 2, pp. 89-120 | DOI | MR | Zbl
[25] Alexander polynomial of plane algebraic curves and cyclic multiple planes, Duke Math. J., Volume 49 (1982) no. 4, pp. 833-851 http://projecteuclid.org/getRecord?id=euclid.dmj/1077315533 | DOI | MR | Zbl
[26] On the homotopy type of the complement to plane algebraic curves, J. Reine Angew. Math., Volume 367 (1986), pp. 103-114 | DOI | MR | Zbl
[27] Invariants of plane algebraic curves via representations of the braid groups, Invent. Math., Volume 95 (1989) no. 1, pp. 25-30 | DOI | MR | Zbl
[28] Characteristic varieties of algebraic curves, Applications of algebraic geometry to coding theory, physics and computation (Eilat, 2001) (NATO Sci. Ser. II Math. Phys. Chem.), Volume 36, Kluwer Acad. Publ., Dordrecht, 2001, pp. 215-254 | MR | Zbl
[29] Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.), Volume 17 (2001) no. 3, pp. 361-380 | DOI | MR | Zbl
[30] Über Automorphismen von Fundamentalgruppen berandeter Flächen, Math. Ann., Volume 109 (1934) no. 1, pp. 617-646 | DOI | MR | Zbl
[31] An introduction to the abelian Reidemeister torsion of three-dimensional manifolds, Ann. Math. Blaise Pascal, Volume 18 (2011) no. 1, pp. 61-140 | DOI
[32] Whitehead torsion, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 358-426 | DOI | MR | Zbl
[33] A duality theorem for Reidemeister torsion, Ann. of Math. (2), Volume 76 (1962), pp. 137-147 | DOI | MR | Zbl
[34] Algebraic surfaces and the arithmetic of braids. I, Arithmetic and geometry, Vol. II (Progr. Math.), Volume 36, Birkhäuser Boston, Boston, MA, 1983, pp. 199-269 | MR | Zbl
[35] On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2), Volume 66 (1957), pp. 1-26 | DOI | MR | Zbl
[36] On Dehn’s lemma and the asphericity of knots, Proc. Nat. Acad. Sci. U.S.A., Volume 43 (1957), pp. 169-172 | DOI | MR | Zbl
[37] Reidemeister torsion in knot theory, Uspekhi Mat. Nauk, Volume 41 (1986) no. 1(247), p. 97-147, 240 | MR | Zbl
[38] Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2001 (Notes taken by Felix Schlenk) | MR | Zbl
[39] Twisted Alexander polynomial for finitely presentable groups, Topology, Volume 33 (1994) no. 2, pp. 241-256 | DOI | MR | Zbl
[40] On irreducible -manifolds which are sufficiently large, Ann. of Math. (2), Volume 87 (1968), pp. 56-88 | DOI | MR | Zbl
[41] Über die Verzweigungen bei Funktionen von zwei Veränderlichen, Jahresberichte D. M. V., Volume 14 (1905), pp. 517
[42] Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen, Math. Ann., Volume 97 (1927) no. 1, pp. 357-375 | DOI | MR
[43] On the Problem of Existence of Algebraic Functions of Two Variables Possessing a Given Branch Curve, Amer. J. Math., Volume 51 (1929) no. 2, pp. 305-328 | DOI | MR
Cité par Sources :