Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces
Annales mathématiques Blaise Pascal, Volume 17 (2010) no. 2, pp. 327-340.

We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.

DOI: 10.5802/ambp.286
Classification: 43A80, 22E25
Keywords: Wave equation, Damek–Ricci space
Francesca Astengo 1; Bianca Di Blasio 2

1 Dipartimento di Matematica Via Dodecaneso 35 16146 Genova Italy
2 Dipartimento di Matematica e Applicazioni Via Cozzi 53 20125 Milano Italy
@article{AMBP_2010__17_2_327_0,
     author = {Francesca Astengo and Bianca Di Blasio},
     title = {Huygens{\textquoteright} principle and a {Paley{\textendash}Wiener} type theorem on {Damek{\textendash}Ricci} spaces},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {327--340},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {17},
     number = {2},
     year = {2010},
     doi = {10.5802/ambp.286},
     mrnumber = {2778917},
     zbl = {1207.43006},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/}
}
TY  - JOUR
AU  - Francesca Astengo
AU  - Bianca Di Blasio
TI  - Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces
JO  - Annales mathématiques Blaise Pascal
PY  - 2010
SP  - 327
EP  - 340
VL  - 17
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/
DO  - 10.5802/ambp.286
LA  - en
ID  - AMBP_2010__17_2_327_0
ER  - 
%0 Journal Article
%A Francesca Astengo
%A Bianca Di Blasio
%T Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces
%J Annales mathématiques Blaise Pascal
%D 2010
%P 327-340
%V 17
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/
%R 10.5802/ambp.286
%G en
%F AMBP_2010__17_2_327_0
Francesca Astengo; Bianca Di Blasio. Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces. Annales mathématiques Blaise Pascal, Volume 17 (2010) no. 2, pp. 327-340. doi : 10.5802/ambp.286. https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/

[1] N. B. Andersen Real Paley–Wiener theorem for the inverse Fourier transform on a Riemannian symmetric space, Pacific J. Math., Volume 213 (2004), pp. 1-13 | DOI | MR | Zbl

[2] J. Ph. Anker; E. Damek; C. Yacoub Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa, Volume 23 (1996), pp. 643-679 | Numdam | MR | Zbl

[3] F. Astengo; B. Di Blasio A Paley-Wiener theorem on NA harmonic spaces, Colloq. Math., Volume 80 (1999), pp. 211-233 | MR | Zbl

[4] F. Astengo; B. Di Blasio Some properties of horocycles on Damek–Ricci spaces, Diff. Geo. Appl., Volume 26 (2008), pp. 676-682 | DOI | MR | Zbl

[5] F. Astengo; R. Camporesi; B. Di Blasio The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Austral. Math. Soc., Volume 55 (1997), pp. 405-424 | DOI | MR | Zbl

[6] F. Ayadi Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian, J. Lie Theory, Volume 18 (2008), pp. 747-755 | MR | Zbl

[7] S. Ben Saïd Huygens’ principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators, Math. Res. Lett., Volume 13 (2006), pp. 43-58 | MR | Zbl

[8] T. Branson; G. Ólafsson; A. Pasquale The Paley-Wiener Theorem for the Jacobi transform and the local Huygens’ principle for root systems with even multiplicities, Indag. Mathem., Volume 16 (2005), pp. 429-442 | DOI | MR | Zbl

[9] T. Branson; G. Ólafsson; H. Schlichtkrull Huygens’ principle in Riemannian symmetric spaces, Math. Ann., Volume 301 (1995), pp. 445-462 | DOI | MR | Zbl

[10] M. Cowling; A. H. Dooley; A. Korányi; F. Ricci H-type groups and Iwasawa decompositions, Adv. Math., Volume 87 (1991), pp. 1-41 | DOI | MR | Zbl

[11] E. Damek The geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math., Volume 53 (1987), pp. 255-268 | MR | Zbl

[12] E. Damek A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math., Volume 53 (1987), pp. 239-247 | MR | Zbl

[13] E. Damek; F. Ricci Harmonic analysis on solvable extensions of H–type groups, J. Geom. Anal., Volume 2 (1992), pp. 213-248 | MR | Zbl

[14] J. El Kamel; C. Yacoub Huygens’ priciple and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian, Ann. Math. Blaise Pascal, Volume 12 (2005), pp. 147-160 | DOI | Numdam | MR | Zbl

[15] J. Hadamard Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923

[16] S. Helgason Geometric Analysis on Symmetric Spaces, Math. Surveys and Monographs 39, American Mathematical Society, Providence RI, 1994 | MR | Zbl

[17] A. Kaplan Fundamental solution for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., Volume 258 (1980), pp. 147-153 | DOI | MR | Zbl

[18] M. Noguchi The Solution of the Shifted Wave equation on Damek–Ricci Space, Interdiscip. Inform. Sci., Volume 8 (2002), pp. 101-113 | DOI | MR | Zbl

[19] M. E. Taylor Partial Differential Equations, Texts in Applied Mathematics 23, Springer-Verlag, New York, 1996 | MR | Zbl

[20] S. Thangavelu On Paley–Wiener and Hardy theorems for NA groups, Math. Z., Volume 245 (2003), pp. 483-502 | DOI | MR | Zbl

Cited by Sources: