We prove that Huygens’ principle and the principle of equipartition of energy hold for the modified wave equation on odd dimensional Damek–Ricci spaces. We also prove a Paley–Wiener type theorem for the inverse of the Helgason Fourier transform on Damek–Ricci spaces.
Mots clés : Wave equation, Damek–Ricci space
Francesca Astengo 1 ; Bianca Di Blasio 2
@article{AMBP_2010__17_2_327_0, author = {Francesca Astengo and Bianca Di Blasio}, title = {Huygens{\textquoteright} principle and a {Paley{\textendash}Wiener} type theorem on {Damek{\textendash}Ricci} spaces}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {327--340}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {2}, year = {2010}, doi = {10.5802/ambp.286}, mrnumber = {2778917}, zbl = {1207.43006}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/} }
TY - JOUR AU - Francesca Astengo AU - Bianca Di Blasio TI - Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 327 EP - 340 VL - 17 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/ DO - 10.5802/ambp.286 LA - en ID - AMBP_2010__17_2_327_0 ER -
%0 Journal Article %A Francesca Astengo %A Bianca Di Blasio %T Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces %J Annales mathématiques Blaise Pascal %D 2010 %P 327-340 %V 17 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/ %R 10.5802/ambp.286 %G en %F AMBP_2010__17_2_327_0
Francesca Astengo; Bianca Di Blasio. Huygens’ principle and a Paley–Wiener type theorem on Damek–Ricci spaces. Annales mathématiques Blaise Pascal, Tome 17 (2010) no. 2, pp. 327-340. doi : 10.5802/ambp.286. https://ambp.centre-mersenne.org/articles/10.5802/ambp.286/
[1] Real Paley–Wiener theorem for the inverse Fourier transform on a Riemannian symmetric space, Pacific J. Math., Volume 213 (2004), pp. 1-13 | DOI | MR | Zbl
[2] Spherical analysis on harmonic groups, Ann. Scuola Norm. Sup. Pisa, Volume 23 (1996), pp. 643-679 | Numdam | MR | Zbl
[3] A Paley-Wiener theorem on harmonic spaces, Colloq. Math., Volume 80 (1999), pp. 211-233 | MR | Zbl
[4] Some properties of horocycles on Damek–Ricci spaces, Diff. Geo. Appl., Volume 26 (2008), pp. 676-682 | DOI | MR | Zbl
[5] The Helgason Fourier transform on a class of nonsymmetric harmonic spaces, Bull. Austral. Math. Soc., Volume 55 (1997), pp. 405-424 | DOI | MR | Zbl
[6] Equipartition of energy for the wave equation associated to the Dunkl-Cherednik Laplacian, J. Lie Theory, Volume 18 (2008), pp. 747-755 | MR | Zbl
[7] Huygens’ principle for the wave equation associated with the trigonometric Dunkl-Cherednik operators, Math. Res. Lett., Volume 13 (2006), pp. 43-58 | MR | Zbl
[8] The Paley-Wiener Theorem for the Jacobi transform and the local Huygens’ principle for root systems with even multiplicities, Indag. Mathem., Volume 16 (2005), pp. 429-442 | DOI | MR | Zbl
[9] Huygens’ principle in Riemannian symmetric spaces, Math. Ann., Volume 301 (1995), pp. 445-462 | DOI | MR | Zbl
[10] -type groups and Iwasawa decompositions, Adv. Math., Volume 87 (1991), pp. 1-41 | DOI | MR | Zbl
[11] The geometry of a semidirect extension of a Heisenberg type nilpotent group, Colloq. Math., Volume 53 (1987), pp. 255-268 | MR | Zbl
[12] A Poisson kernel on Heisenberg type nilpotent groups, Colloq. Math., Volume 53 (1987), pp. 239-247 | MR | Zbl
[13] Harmonic analysis on solvable extensions of –type groups, J. Geom. Anal., Volume 2 (1992), pp. 213-248 | MR | Zbl
[14] Huygens’ priciple and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian, Ann. Math. Blaise Pascal, Volume 12 (2005), pp. 147-160 | DOI | Numdam | MR | Zbl
[15] Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Yale University Press, New Haven, 1923
[16] Geometric Analysis on Symmetric Spaces, Math. Surveys and Monographs 39, American Mathematical Society, Providence RI, 1994 | MR | Zbl
[17] Fundamental solution for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc., Volume 258 (1980), pp. 147-153 | DOI | MR | Zbl
[18] The Solution of the Shifted Wave equation on Damek–Ricci Space, Interdiscip. Inform. Sci., Volume 8 (2002), pp. 101-113 | DOI | MR | Zbl
[19] Partial Differential Equations, Texts in Applied Mathematics 23, Springer-Verlag, New York, 1996 | MR | Zbl
[20] On Paley–Wiener and Hardy theorems for groups, Math. Z., Volume 245 (2003), pp. 483-502 | DOI | MR | Zbl
Cité par Sources :