In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.
@article{AMBP_2010__17_1_153_0, author = {Georges Grekos and Vladim{\'\i}r Toma and Jana Tomanov\'a}, title = {A note on uniform or {Banach} density}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {153--163}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {17}, number = {1}, year = {2010}, doi = {10.5802/ambp.280}, zbl = {1239.11012}, mrnumber = {2674656}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.280/} }
TY - JOUR AU - Georges Grekos AU - Vladimír Toma AU - Jana Tomanová TI - A note on uniform or Banach density JO - Annales mathématiques Blaise Pascal PY - 2010 SP - 153 EP - 163 VL - 17 IS - 1 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.280/ DO - 10.5802/ambp.280 LA - en ID - AMBP_2010__17_1_153_0 ER -
%0 Journal Article %A Georges Grekos %A Vladimír Toma %A Jana Tomanová %T A note on uniform or Banach density %J Annales mathématiques Blaise Pascal %D 2010 %P 153-163 %V 17 %N 1 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.280/ %R 10.5802/ambp.280 %G en %F AMBP_2010__17_1_153_0
Georges Grekos; Vladimír Toma; Jana Tomanová. A note on uniform or Banach density. Annales mathématiques Blaise Pascal, Volume 17 (2010) no. 1, pp. 153-163. doi : 10.5802/ambp.280. https://ambp.centre-mersenne.org/articles/10.5802/ambp.280/
[1] Sets of recurrence of -actions and properties of sets of differences in , J. London Math. Soc. (2), Volume 31 (1985) no. 2, pp. 295-304 | DOI | MR | Zbl
[2] Ergodic Ramsey theory, Contemporary Math., Volume 65 (1987), pp. 63-87 | MR | Zbl
[3] Multiple recurrence and nilsequences. With an appendix by Imre Ruzsa, Invent. Math., Volume 160 (2005), pp. 261-303 | DOI | MR | Zbl
[4] Arithmetic Progressions in Lacunary Sets, Rocky Mountain J. Math., Volume 17 (1987), pp. 587-596 | DOI | MR | Zbl
[5] The Uniform Density of Sets of Integers and Fermat’s Last Theorem, C. R. Math. Rep. Acad. Sci. Canada, Volume XII (1990), pp. 1-6 | MR | Zbl
[6] Some linear and some quadratic recursion formulas, I. Nederl. Akad. Wetensch. Proc. Ser. A. 54 = Indagationes Math., Volume 13 (1951), pp. 374-382 | MR | Zbl
[7] Small sum sets and the Faber gap condition, Acta Sci. Math. (Szeged), Volume 47 (1984), pp. 233-237 | MR | Zbl
[8] Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten., Math. Zeitschr., Volume 17 (1923), pp. 228-249 | DOI | MR
[9] Recurrence in ergodic theory and combinatorial number theory, Princeton University Press, Princeton, N.J., 1981 (M. B. Porter Lectures) | MR | Zbl
[10] Remarks on uniform density of sets of integers, Acta Acad. Paed. Agriensis, Sectio Math., Volume 23 (2002), pp. 3-13 | MR | Zbl
[11] Note on difference sets in , Periodica Math. Hungarica, Volume 44 (2002), pp. 183-185 | DOI | MR | Zbl
[12] Nonstandard methods for upper Banach density problems, Journal of Number Theory, Volume 91 (2001), pp. 20-38 | DOI | MR | Zbl
[13] On certain solutions of the diophantine equation , Acta Arithmetica, Volume 62 (1992), pp. 61-71 | MR | Zbl
[14] Problems and theorems in analysis I, Springer-Verlag, Berlin, 1972 | MR | Zbl
[15] Density results on families of diophantine equations with finitely many solutions, L’Enseignement Mathématique, Volume 39 (1993), pp. 3-23 | MR | Zbl
[16] Remarks on Steinhaus Property and Ratio Sets of Positive Integers, Czech. Math. J., Volume 50 (2000), pp. 175-183 | DOI | MR | Zbl
[17] Olivier’s theorem and statistical convergence, Annales Math. Blaise Pascal, Volume 10 (2003), pp. 305-313 | DOI | Numdam | MR | Zbl
[18] Probability theory and combinatorial optimization, CBMS-NSF Regional Conference Series in Applied Mathematics, 69, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997 | MR | Zbl
Cited by Sources: