Soit un groupe localement compact et la mesure de Haar à gauche sur . Etant donné une mesure de Radon positive , nous établissons une condition nécessaire sur les couples pour lesquels est un multiplicateur de dans . Appliqué à , notre résultat est plus fort que la condition nécessaire établie par Oberlin dans [14] et est très lié à une classe de mesures définie par Fofana dans [7].
Lorsque est le tore, nous obtenons une généralisation d’une condition énoncée par Oberlin [15] et l’améliorons dans certains cas.
Let be a locally compact group and the left Haar measure on . Given a non-negative Radon measure , we establish a necessary condition on the pairs for which is a multiplier from to . Applied to , our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].
When is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.
Keywords: Cantor-Lebesgue measure, $L^{q}$-improving measure, non-negative Radon measure
Mots clés : Mesure de Cantor-Lebesgue, mesure $L^{q}$-improving, mesure de Radon positive
Bérenger Akon Kpata 1 ; Ibrahim Fofana 1 ; Konin Koua 1
@article{AMBP_2009__16_2_339_0, author = {B\'erenger Akon Kpata and Ibrahim Fofana and Konin Koua}, title = {Necessary condition for measures which are $(L^{q},L^{p})$ multipliers}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {339--353}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {16}, number = {2}, year = {2009}, doi = {10.5802/ambp.271}, mrnumber = {2568870}, zbl = {1178.43001}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.271/} }
TY - JOUR AU - Bérenger Akon Kpata AU - Ibrahim Fofana AU - Konin Koua TI - Necessary condition for measures which are $(L^{q},L^{p})$ multipliers JO - Annales mathématiques Blaise Pascal PY - 2009 SP - 339 EP - 353 VL - 16 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.271/ DO - 10.5802/ambp.271 LA - en ID - AMBP_2009__16_2_339_0 ER -
%0 Journal Article %A Bérenger Akon Kpata %A Ibrahim Fofana %A Konin Koua %T Necessary condition for measures which are $(L^{q},L^{p})$ multipliers %J Annales mathématiques Blaise Pascal %D 2009 %P 339-353 %V 16 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.271/ %R 10.5802/ambp.271 %G en %F AMBP_2009__16_2_339_0
Bérenger Akon Kpata; Ibrahim Fofana; Konin Koua. Necessary condition for measures which are $(L^{q},L^{p})$ multipliers. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 339-353. doi : 10.5802/ambp.271. https://ambp.centre-mersenne.org/articles/10.5802/ambp.271/
[1] Convolution inequalities on the circle, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) (Wadsworth Math. Ser.), Wadsworth, Belmont, CA, 1983, pp. 32-43 | MR
[2] Étude des coefficients de Fourier des fonctions de , Ann. Inst. Fourier (Grenoble), Volume 20 (1970), pp. 335-402 | DOI | Numdam | MR | Zbl
[3] A convolution inequality concerning Cantor-Lebesgue measures, Revista Mat. Iberoamericana, Volume vol. 1, n. ∘ 4 (1985), pp. 79-83 | MR | Zbl
[4] The geometry of fractal sets, Cambridge University Press, London/New York, 1985 | MR | Zbl
[5] Fractal geometry, Wiley, New York, 1990 | MR | Zbl
[6] Continuité de l’intégrale fractionnaire et espaces , C. R. A. S. Paris, Volume t. 308, série I (1989), pp. 525-527 | MR | Zbl
[7] Transformation de Fourier dans et , Afrika matematika, Volume série 3, vol. 5 (1995), pp. 53-76 | MR | Zbl
[8] Espaces et Continuité de l’opérateur maximal fractionnaire de Hardy-Littlewood, Afrika matematika, Volume série 3, vol. 12 (2001), pp. 23-37 | MR | Zbl
[9] The size of -improving measures, J. Funct. Anal., Volume 84 (1989), pp. 472-495 | DOI | MR | Zbl
[10] An introduction to the theory of multipliers, Springer-Verlag, Berlin, Heidelberg, New York, 1971 | MR | Zbl
[11] Fractal Measures and Mean -Variations, J. Funct. Anal., Volume 108 (1992), pp. 427-457 | DOI | MR | Zbl
[12] A convolution property of the Cantor-Lebesgue measure, Colloq. Math., Volume 47 (1982), pp. 113-117 | MR | Zbl
[13] Convolution with measure on hypersurfaces, Math. Proc. Camb. Phil. Soc., Volume 129 (2000), pp. 517-526 | DOI | MR | Zbl
[14] Affine dimension : measuring the vestiges of curvature, Michigan Math. J., Volume 51 (2003), pp. 13-26 | DOI | MR | Zbl
[15] A convolution property of the Cantor-Lebesgue measure II, Colloq. Math., Volume 97 (2003) no. 1, pp. 23-28 | DOI | MR | Zbl
[16] Most Riesz product measures are -improving, Proc. Amer. Math. Soc., Volume 97 (1986), pp. 291-295 | MR | Zbl
[17] Some singular measures on the circle which improve spaces, Colloq. Math., Volume 52 (1987), pp. 133-144 | MR | Zbl
[18] Harmonic Analysis on , 13 (1976), pp. 97-135 (Mathematical Association of America, Washington, D. C.) | MR | Zbl
[19] Trigonometric series. 2nd ed. Vol. I, Cambridge University Press, New York, 1959 | MR | Zbl
Cité par Sources :