Bérenger Akon Kpata, Ibrahim Fofana and Konin Koua

Necessary condition for measures which are \((L^q, L^p)\) multipliers

<http://ambp.cedram.org/item?id=AMBP_2009___16_2_339_0>

© Annales mathématiques Blaise Pascal, 2009, tous droits réservés.
L’accès aux articles de la revue « Annales mathématiques Blaise Pascal » (http://ambp.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques
de l’université Blaise-Pascal, UMR 6620 du CNRS
Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/
Necessary condition for measures which are \((L^q, L^p)\) multipliers

BÉRENGER AKON KPATA
IBRAHIM FOFANA
KONIN KOUA

Abstract

Let \(G\) be a locally compact group and \(\rho\) the left Haar measure on \(G\). Given a non-negative Radon measure \(\mu\), we establish a necessary condition on the pairs \((q, p)\) for which \(\mu\) is a multiplier from \(L^q(G, \rho)\) to \(L^p(G, \rho)\). Applied to \(\mathbb{R}^n\), our result is stronger than the necessary condition established by Oberlin in [14] and is closely related to a class of measures defined by Fofana in [7].

When \(G\) is the circle group, we obtain a generalization of a condition stated by Oberlin [15] and improve on it in some cases.

Résumé

Soit \(G\) un groupe localement compact et \(\rho\) la mesure de Haar à gauche sur \(G\). Etant donné une mesure de Radon positive \(\mu\), nous établissons une condition nécessaire sur les couples \((q, p)\) pour lesquels \(\mu\) est un multiplicateur de \(L^q(G, \rho)\) dans \(L^p(G, \rho)\). Appliqué à \(\mathbb{R}^n\), notre résultat est plus fort que la condition nécessaire établie par Oberlin dans [14] et est très lié à une classe de mesures définie par Fofana dans [7].

Lorsque \(G\) est le tore, nous obtenons une généralisation d’une condition énoncée par Oberlin [15] et l’améliorons dans certains cas.

1. Introduction

We suppose that \(G\) is a locally compact group and \(\rho\) is the left Haar measure on \(G\).

For \(1 \leq q < \infty\), a Radon measure \(\mu\) on \(G\) is said to be \(L^q\)-improving if there exists a real number \(p > q\) such that

\[
\mu \ast f \in L^p(G, \rho) \quad \text{and} \quad \|\mu \ast f\|_{L^p(G, \rho)} \leq c \|f\|_{L^q(G, \rho)}
\]

Keywords: Cantor-Lebesgue measure, \(L^q\)-improving measure, non-negative Radon measure.
Math. classification: 43A05, 43A15.
for all \(f \in L^q(G, \rho) \), where \(c \) is a real number not depending on \(f \).

Of course absolutely continuous measures with Radon-Nikodym derivatives with respect to \(\rho \) in \(L^r(G, \rho) \) with \(\frac{1}{q} + \frac{1}{r} - 1 > 0 \) are \(L^q \)-improving. But \(L^q \)-improving singular measures also exist.

Bonami [2] showed that all tame Riesz products on the Walsh group are \(L^q \)-improving, and that was extended to all compact abelian groups by Ritter [16]. Moreover it is well known that on the circle group \(\mathbb{T} = \mathbb{R}/\mathbb{Z} \), the Cantor-Lebesgue measure \(\mu_3^2 \) associated with the Cantor set of constant ratio of dissection \(\delta > 2 \) is \(L^q \)-improving for \(1 < q < \infty \).(See Section 4 for a precise definition of this measure.) This result was proved by Oberlin [12] for \(\delta = 3 \). Ritter [17], Beckner, Janson and Jerison [1] proved the same for \(\delta \) rational and Christ [3] for \(\delta \) irrational.

In fact, Christ has extended the result to Cantor-Lebesgue measures with variable but bounded ratios \(2 < \delta_t \leq c \) of dissection.

In this note, we are interested in the following problem: given a non-negative Radon measure \(\mu \) on \(G \), determine the indices \(1 \leq q < p < \infty \) for which there exists a non-negative constant \(c(\mu, q, p) \) such that

\[
\| \mu \ast f \|_{L^p(G, \rho)} \leq c(\mu, q, p) \| f \|_{L^q(G, \rho)}, \quad f \in L^q(G, \rho).
\]

In [15] Oberlin stated the following

Proposition 1.1. If the Cantor-Lebesgue measure \(\mu_3^2 \) associated to the middle third Cantor set satisfies (1.1), then

\[
\frac{1}{q} + \left(1 - \frac{\log 2}{\log 3} \right) \left(1 - \frac{1}{p} \right) \leq 1.
\]

Graham, Hare and Ritter obtained in [9] the following

Proposition 1.2. Let \(\mu \) be a measure on the circle group \(\mathbb{T} \) and \(1 \leq q < 2 \). If there exists a non-negative constant \(c(\mu, q) \) such that

\[
\| \mu \ast f \|_{L^2(\mathbb{T})} \leq c(\mu, q) \| f \|_{L^q(\mathbb{T})}, \quad f \in L^q(\mathbb{T}),
\]

then there exists a positive real number \(K \) such that for any interval \(I \) whose endpoints are \(x \) and \(x + h \), we have

\[
| \mu(I) | \leq K |h|^{\frac{1}{2} - \frac{1}{q}}.
\]
Measures which are \((L^q, L^p)\) multipliers

Inequality (1.3) means that \(\mu\) satisfies a Lipschitz condition of order
\(\frac{1}{q} - \frac{1}{2}\).

Replacing \(T\) by \(\mathbb{R}^n\), Oberlin proved a similar necessary condition (see the proof of Proposition 2 in [14]).

Proposition 1.3. If a non-negative Radon measure on \(\mathbb{R}^n\) satisfies (1.1), then there exists a positive real number \(K\) such that

\[
\mu(R) \leq K |R|^\frac{1}{q} - \frac{1}{p}
\]

(1.4)

for all rectangles \(R\) in \(\mathbb{R}^n\).

In the present paper, we establish the following necessary condition:

Proposition 1.4. Suppose that \(\mu\) is a non-negative Radon measure on \(G\) satisfying (1.1). Then for any subsets \(V\) and \(\{x_i / i \in I\}\) of \(G\) such that

i) \(V\) is relatively compact,

ii) \(I\) is countable and \((x_i V) \cap (x_j V) = \emptyset\) for \(i \neq j\),

we have

\[
\rho(V)^\frac{1}{p} \left(\sum_{i \in I} \mu(x_i V)^p \right)^\frac{1}{p} \leq c(\mu, q, p) \rho(V^{-1} V)^\frac{1}{q}.
\]

(1.5)

We show that all the necessary conditions stated in Proposition 1.1, Proposition 1.2 and Proposition 1.3 follow from Proposition 1.4.

Moreover any non-negative Radon measure \(\mu\) on \(\mathbb{T}\) or \(\mathbb{R}^n\) satisfying the conclusion of Proposition 1.4 belongs to the space \(M^{p, \alpha}\), \(\frac{1}{\alpha} = 1 - \frac{1}{q} + \frac{1}{p}\) (see Notation 3.4 and Section 4 for the definition of \(M^{p, \alpha}\)). In [7], Fofana used these spaces of measures and their subspaces \((L^q, l^p)^\alpha\) to express a necessary condition for Fourier multipliers. He also obtained a generalization of Hausdorff-Young inequality. For other results related to these spaces see [6], [8] and [11].

Inequality (1.2) means exactly that \(\mu_3^2\) belongs to \(M^{p, \alpha}\) where \(\frac{1}{\alpha} = 1 - \frac{1}{q} + \frac{1}{p}\) (see the comment after the proof of Proposition 4.2).

Applied to the Cantor-Lebesgue measure associated to the Cantor set of constant ratio of dissection \(\delta > 3\), Proposition 1.4 yields the following

Proposition 1.5. Let \(\delta > 3\) and \(1 < q < p < \infty\). Assume that

\[
\left\| \mu_3^2 * f \right\|_{L^p(\mathbb{T})} \leq c \left(\mu_3^2, p, q \right) \|f\|_{L^q(\mathbb{T})}, \quad f \in L^q(\mathbb{T}).
\]
Then
\[p \leq \frac{\log \left(\frac{\delta}{2} \right)}{\log \left(\frac{\delta}{3} \right)} q \]
(1.6)
and
\[\frac{1}{q} + \left(1 - \frac{\log 2}{\log \delta} \right) \left(1 - \frac{1}{p} \right) \leq 1. \]
(1.7)

Notice that (1.6) is stronger than (1.7) if \(q > \frac{\log 3}{\log 2} \).

The remainder of this paper is organized as follows: in Section 2 we prove Proposition 1.4 and apply it to \(G = \mathbb{R}^n \) in Section 3. In Section 4 we examine the case \(G = \mathbb{T} \).

2. Proof of Proposition 1.4

Proof. Let \(V \) be a relatively compact subset of \(G \). Then \(f = \chi_{V^{-1}V} \) belongs to \(L^q (G, \rho) \). We have, for all \(i \in I \) and all \(x \in x_iV \),
\[\mu \ast f (x) = \int_G f \left(y^{-1}x \right) d\mu (y) \geq \int_{x_iV} f \left(y^{-1}x \right) d\mu (y), \]
\[y \in x_iV \implies y^{-1}x \in V^{-1}V \quad \text{and} \quad f \left(y^{-1}x \right) = 1 \]
and therefore \(\mu \ast f (x) \geq \mu (x_iV) \). It follows that
\[\int_G (\mu \ast f (x))^p d\rho (x) \geq \sum_{i \in I} \int_{x_iV} (\mu \ast f (x))^p d\rho (x) \geq \sum_{i \in I} \mu (x_iV)^p \rho (x_iV). \]

Therefore
\[\rho \left(V \right)^{\frac{1}{p}} \left(\sum_{i \in I} \mu (x_iV)^p \right)^{\frac{1}{p}} \leq \| \mu \ast f \|_{L^p(G, \rho)} \]
\[\leq c(\mu, q, p) \| f \|_{L^q(G, \rho)} \]
\[= c(\mu, q, p) \rho \left(V^{-1}V \right)^{\frac{1}{q}}. \]

This completes the proof. \(\square \)
Measures which are \((L^q, L^p)\) multipliers

3. Case \(G = \mathbb{R}^n\)

Notation 3.1. Let \(R\) be a rectangle in \(\mathbb{R}^n\) with sides \(a_i v_i, i = 1, \ldots, n\), where \((v_i)_{1 \leq i \leq n}\) is a direct orthonormal basis in \(\mathbb{R}^n\) and \(a_i > 0, i = 1, \ldots, n\).

For any \(r > 0\) and \(k = (k_1, \ldots, k_n) \in \mathbb{Z}^n\), set

\[
R^r_k = \left\{ \sum_{i=1}^n (k_i r a_i + x_i) v_i / 0 \leq x_i < r a_i, i = 1, \ldots, n \right\}.
\]

In other words, \(R^r_k\) is a rectangle which \(i\)-th edge is parallel to the vector \(v_i\) and of length \(r a_i\). Notice that for \(r > 0\), the family \(\{R^r_k / k \in \mathbb{Z}^n\}\) is a partition of \(\mathbb{R}^n\).

Proposition 3.2. Let \(1 \leq q \leq p < \infty\). If a non-negative Radon measure \(\mu\) on \(\mathbb{R}^n\) satisfies (1.1), then for all rectangles \(R\) in \(\mathbb{R}^n\)

\[
\sup_{r > 0} (r^n |R|)^{\frac{1}{\alpha} - 1} \left(\sum_{k \in \mathbb{Z}^n} \mu(R^r_k)^p \right)^{\frac{1}{p}} \leq c(\mu, q, p) 2^n
\]

where \(\frac{1}{\alpha} = 1 - \frac{1}{q} + \frac{1}{p}\).

Proof. Let \(r > 0\). Notice that for every \(k \in \mathbb{Z}^n\) we have that \(R^r_k = R_0 + u_k\), where

\[
R_0 = \left\{ \sum_{i=1}^n x_i v_i / 0 \leq x_i < r a_i, i = 1, \ldots, n \right\} \quad \text{and} \quad u_k = \sum_{i=1}^n k_i r a_i v_i.
\]

It follows from Proposition 1.4 that

\[
|R_0 - R_0|^{-\frac{1}{q}} |R_0|^\frac{1}{p} \left(\sum_{k \in \mathbb{Z}^n} \mu(R^r_k)^p \right)^{\frac{1}{p}} \leq c(\mu, q, p).
\]

Since \(|R_0| = r^n |R|\), we have

\[
2^{-n} (r^n |R|)^{-\frac{1}{q}} (r^n |R|)^\frac{1}{p} \left(\sum_{k \in \mathbb{Z}^n} \mu(R^r_k)^p \right)^{\frac{1}{p}} \leq c(\mu, q, p).
\]

Hence

\[
(r^n |R|)^{\frac{1}{\alpha} - 1} \left(\sum_{k \in \mathbb{Z}^n} \mu(R^r_k)^p \right)^{\frac{1}{p}} \leq c(\mu, q, p) 2^n.
\]

The assertion follows. \(\square\)
Remark 3.3. Proposition 1.3 is a direct consequence of Proposition 3.2. In fact, suppose that \(\mu \) satisfies (1.1) and let \(R \) be any rectangle. As \(\{ R_k \mid k \in \mathbb{Z}^n \} \) is a partition of \(\mathbb{R}^n \), \(R \subset \bigcup_{k \in M} R_k \), where \(M \) is a subset of \(\mathbb{Z}^n \) which number of elements does not exceed \(2^n \). So \(\mu(R) \leq \sum_{k \in M} \mu(R_k) \) and by Hölder inequality we have

\[
|R|^{\frac{1}{p} - \frac{1}{q}} \mu(R) \leq 2^{\frac{n(p-1)}{p}} |R|^{\frac{1}{p} - \frac{1}{q}} \left(\sum_{k \in M} \mu(R_k)^p \right)^{\frac{1}{p}}
\]

\[
\leq 2^{\frac{n(p-1)}{p}} \left(\sum_{k \in \mathbb{Z}^n} \mu(R_k)^p \right)^{\frac{1}{p}}
\]

\[
\leq 2^{\frac{n(p-1)}{p}} \sup_{r > 0} (r^n |R|)^{\frac{1}{\alpha} - 1} \left(\sum_{k \in \mathbb{Z}^n} \mu(R_k)^p \right)^{\frac{1}{p}}
\]

where \(\frac{1}{\alpha} = 1 - \frac{1}{q} + \frac{1}{p} \). Thus, by Proposition 3.2 we obtain

\[
|R|^{\frac{1}{p} - \frac{1}{q}} \mu(R) \leq 2^{n \left(1 - \frac{1}{p} + \frac{1}{q} \right)} c(\mu, q, p).
\]

Notation 3.4. For any \(k \in \mathbb{Z}^n \), \(x \in \mathbb{R}^n \) and \(r > 0 \), set

\[
I^r_k = \prod_{i=1}^n [k_i r, (k_i + 1) r) \quad \text{and} \quad J^r_x = \prod_{i=1}^n \left(x_i - \frac{r}{2}, x_i + \frac{r}{2} \right).
\]

Let \(M^0 \) denote the space of Radon measures (not necessarily non-negative) on \(\mathbb{R}^n \). For \(\mu \in M^0 \), \(|\mu| \) stands for its total variation. Let \(1 \leq \alpha, p \leq \infty \). For \(\mu \in M^0 \) and \(r > 0 \), we set

\[
r \| \mu \|_p = \begin{cases} \left(\sum_{k \in \mathbb{Z}^n} |\mu(I^r_k)|^p \right)^{\frac{1}{p}} & \text{if } 1 \leq p < \infty, \\
\sup_{x \in \mathbb{R}^n} |\mu(J^r_x)| & \text{if } p = \infty \end{cases}
\]

and \(\| \mu \|_{p, \alpha} = \sup_{r > 0} r^{\alpha \left(\frac{1}{\alpha} - 1 \right)} r \| \mu \|_p \).

We define \(M^{p, \alpha}(\mathbb{R}^n) = \{ \mu \in M^0 / \| \mu \|_{p, \alpha} < \infty \} \).

Another consequence of Proposition 3.2 is the following
Measures which are \((L^q, L^p)\) multipliers

Corollary 3.5. Assume that \(1 \leq q \leq p < \infty\) and \(\mu\) satisfies (1.1). Then \(\mu\) belongs to \(M^{p, \alpha}(\mathbb{R}^n)\) where \(\frac{1}{\alpha} = 1 - \frac{1}{q} + \frac{1}{p}\).

Proof. It follows by choosing \(a_i = 1\) for \(i \in \{1, \ldots, n\}\) and \((v_i)_{1 \leq i \leq n} = (e_i)_{1 \leq i \leq n}\) the usual basis of \(\mathbb{R}^n\) in the definition of \(R_k^n\) in Proposition 3.2. \(\square\)

4. Case \(G = \mathbb{T}\)

In this section we suppose that \(m \geq 2\) is an integer. Let us describe the construction of the Cantor set with variable ratios of dissection and its associated Cantor-Lebesgue measure. We take the interval \([0, 1)\) as a model for \(\mathbb{T}\). Let \(\delta_t > m\) for \(t = 1, 2, \ldots\). Delete from \([0, 1)\), \((m-1)\) left closed intervals of equal length \(\frac{1}{m-1} \left(1 - \frac{m}{\delta_1}\right)\) so that the \(m\) remaining left closed intervals denoted by \(E^1_l\), \(1 \leq l \leq m\), are equally spaced and have the same length \(\frac{1}{\delta_1}\). From each interval \(E^1_l\), \(1 \leq l \leq m\), delete \((m-1)\) left closed intervals of equal length \(\frac{1}{(m-1)\delta_1} \left(1 - \frac{m}{\delta_1 \delta_2}\right)\) so that the \(m\) remaining left closed subintervals \(E^2_l\), \(1 \leq l \leq m^2\), are equally spaced and have the same length \(\frac{1}{\delta_1 \delta_2}\). At this stage, the remaining subset of \([0, 1)\) is \(C^m_{\delta_1, \delta_2} = \bigcup_{l=1}^{m^2} E^2_l\). By iteration, we obtain a sequence of subsets \(C^m_{\delta_1, \delta_2, \ldots, \delta_j} = \bigcup_{l=1}^{m^j} E^j_l\)

where each \(E^j_l\) is a left closed interval of length \(r_j = \prod_{t=1}^{j} \delta_t^{-1}\). \(C^m_{\delta_1} = \bigcap_{j=1}^{\infty} C^m_{\delta_1, \delta_2, \ldots, \delta_j}\) is the \((m, (\delta_t))\)-Cantor set and the \(\delta_t\)'s are called its ratios of dissection. Associated to \(C^m_{\delta_1}\) in a natural way is a probability measure \(\mu^m_{(\delta_1)}\) satisfying \(\mu^m_{(\delta_1)}(E^j_l) = \frac{1}{m^j}\) for \(j = 1, 2, \ldots\) and for \(l = 1, 2, \ldots, m^j\). This measure is the Cantor-Lebesgue measure associated to the \((m, (\delta_t))\)-Cantor set. When \(\delta_t = \delta, t = 1, 2, \ldots\), we write \(\mu^m_{(\delta_1)} = \mu^m_{\delta}\). It follows that \(\mu^3_{\delta}\) is the usual Cantor-Lebesgue measure associated to the middle third Cantor set. For a detailed exposition on Cantor sets see Zygmund [19].

Notice that if \(\mu\) is a non-negative Radon measure on \(\mathbb{T}\), then in a natural way, we may identify \(\mu\) with a non-negative Radon measure \(\nu\) on \(\mathbb{R}\) having support in the interval \([0, 1)\). In addition, we have the following result established by Ritter in [17].
Proposition 4.1. Let \(1 \leq q \leq p < \infty \), and suppose there is a constant \(K > 0 \) such that
\[
\| \mu * f \|_{L^p(\mathbb{T})} \leq K \| f \|_{L^q(\mathbb{T})}, \quad f \in L^q(\mathbb{T}).
\]
Then there is a constant \(K_0 > 0 \) such that
\[
\| \nu * f \|_{L^p(\mathbb{R})} \leq K_0 \| f \|_{L^q(\mathbb{R})}, \quad f \in L^q(\mathbb{R}).
\]
Defining, for \(1 \leq \alpha, p \leq \infty \),
\[
M_{p, \alpha}(\mathbb{T}) = \{ \mu \in M_{p, \alpha}(\mathbb{R}) / \text{supp}(\mu) \subset [0, 1) \}
\]
where \(\text{supp}(\mu) \) denotes the support of \(\mu \), it is easy to see that Corollary 3.5 holds in this setting.

The following result gives a characterization of measures \(\mu_m^\alpha(\delta_t) \) which belong to \(M_{p, \alpha}(\mathbb{T}) \).

Proposition 4.2. Let \(\delta_t > m, t = 1, 2, \ldots \). Assume that \(1 < \alpha \leq p < \infty \).
Then \(\mu_m^\alpha(\delta_t) \) belongs to \(M_{p, \alpha}(\mathbb{T}) \) if and only if there exists a constant \(c > 0 \) such that
\[
\prod_{t=1}^{j} \delta_t \leq cm^{\alpha(p-1)/p}, \quad j = 1, 2, \ldots.
\]
In particular, the Cantor-Lebesgue measure \(\mu_m^\alpha(\delta) \) of constant ratio of dissection \(\delta \) belongs to \(M_{p, \alpha}(\mathbb{T}) \) if and only if
\[
1 - \frac{1}{\alpha} - \frac{\log m}{\log \delta} \left(1 - \frac{1}{p} \right) \leq 0.
\]
Proof. a) For all \(r \geq 1 \)
\[
r^{\frac{1}{\alpha}-1} r \left\| \mu_m^\alpha(\delta_t) \right\|_p = r^{\frac{1}{\alpha}-1} \leq 1.
\]
b) Let \(j \) be a positive integer and \(r_j = \prod_{t=1}^{j} \delta_t^{-1} \). Recall that for \(l = 1, 2, \ldots, m^j \), \(|E_i^j| = r_j \) and \(\mu_m^\alpha(\delta_t) \left(E_i^j\right) = \frac{1}{m^j} \). For each fixed \(l \), put \(K_l = \{ k \in \mathbb{N} / E_i^j \cap I_k^j \neq \emptyset \} \). Then \(K_l \) has at most 2 elements. In the same way, for each fixed \(k \) in \(\mathbb{N} \) set \(L_k = \{ l \in \{ 1, 2, \ldots, m^j \} / E_i^j \cap I_k^j \neq \emptyset \} \).
MEASURES WHICH ARE \((L^q, L^p)\) MULTIPLIERS

Then the number of elements of \(L_k\) is at most 2. We have

\[
m^j m^{-jp} = \sum_{l=1}^{m^j} \mu^m_{(\delta_t)} \left(E^j_l \right)^p
= \sum_{l=1}^{m^j} \left(\sum_{k \in K_l} \mu^m_{(\delta_t)} \left(E^j_l \cap I^r_k \right) \right)^p
\leq 2^{p-1} \sum_{l \in L_k} \sum_{k \in K_l} \mu^m_{(\delta_t)} \left(E^j_l \cap I^r_k \right)^p
= 2^{p-1} \sum_{k \in \mathbb{N}} \sum_{l \in L_k} \mu^m_{(\delta_t)} \left(E^j_l \cap I^r_k \right)^p
\leq 2^p \sum_{k \in \mathbb{N}} \mu^m_{(\delta_t)} \left(I^r_k \right)^p.
\]

Then

\[
\left(r^j \left(\frac{1}{\alpha} - 1 \right) m^{-1} \right)^j \left(\prod_{t=1}^{\delta_t} \right)^{1-\frac{1}{\alpha}} m^{-j \left(1 - \frac{1}{p} \right)} \leq 2r^{\frac{1}{\alpha}-1} \| \mu^m_{(\delta_t)} \|_p.
\]

c) Let \(r \in (0, 1)\). There exists an integer \(j \geq 1\) such that \(r_j \leq r < r_{j-1}\) where \(r_0 = 1\) and \(r_n = \prod_{t=1}^{\delta_t} \delta_t^{-1}\) for \(n \geq 1\). Furthermore, each \(I^r_k\) intersects at most \(m\) intervals \(E^j_l\). So \(\mu^m_{(\delta_t)} \left(I^r_k \right) \leq m^{-j} m\). The number of \(I^r_k\) which intersect the intervals \(E^j_l\) is at most \(2m^j\). It follows that

\[
\sum_{k \in \mathbb{N}} \mu^m_{(\delta_t)} \left(I^r_k \right)^p \leq 2m^j (1-p) m^p.
\]

Hence

\[
r^{\frac{1}{\alpha}-1} r \| \mu^m_{(\delta_t)} \|_p \leq 2r^\frac{1}{\alpha}-1 m^j \left(\frac{1}{p} - 1 \right) m
\leq 2r^\frac{1}{\alpha}-1 m^j \left(\frac{1}{p} - 1 \right) m
= 2^\frac{1}{\alpha} m \left(\prod_{t=1}^{\delta_t} \delta_t \right)^{\frac{1}{\alpha}} \left(\frac{1}{\alpha} - 1 \right) m^{\frac{1}{\alpha}-1} \right)^j.
\]
Finally,
\[\mu_{\delta_t}^m \in M^{p, \alpha}(\mathbb{T}) \iff \sup_j \left(\prod_{t=1}^j \delta_t \right)^{\frac{1}{j} \left(1 - \frac{1}{\alpha} \right) \frac{1}{m^{\frac{1}{p}} - 1}} < \infty \]

where \(c \) is a positive constant not depending on \(j \).

d) Now, let \(\delta_t = \delta \) for all \(t \geq 1 \). From c) we know that:
\[\mu_{\delta_t}^m \in M^{p, \alpha}(\mathbb{T}) \iff \prod_{t=1}^j \delta_t \leq cm^{\alpha(p-1)/p(\alpha-1)}, \quad j = 1, 2, ... \]

Notice that for \(1 - \frac{1}{\alpha} = \frac{1}{q} - \frac{1}{p} \), (4.1) reduces to (1.2) when \(m = 2 \) and \(\delta = 3 \).

Proposition 4.3. Let \(\mu_{\delta_t}^m \) be the Cantor-Lebesgue measure with variable ratios \(\delta_t > m \) of dissection. Let \(1 < q < p < \infty \). Assume that
\[\left\| \mu_{\delta_t}^m * f \right\|_{L^p(\mathbb{T})} \leq c \left(\mu_{\delta_t}^m, p, q \right) \left\| f \right\|_{L^q(\mathbb{T})}, \quad f \in L^q(\mathbb{T}). \]

Then there exists a constant \(c > 0 \) such that
\[\prod_{t=1}^j \delta_t \leq cm^{\alpha(p-1)/pq}, \quad j = 1, 2, \]

In particular, if \(\delta_t = \delta \) for all \(t \geq 1 \), then
\[\frac{1}{q} + \left(1 - \frac{\log m}{\log \delta} \right) \left(1 - \frac{1}{p} \right) \leq 1. \]

Proof. Let \(1 - \frac{1}{\alpha} = \frac{1}{q} - \frac{1}{p} \). Then the desired result follows from Corollary 3.5 and Proposition 4.2. \(\square \)

Proposition 1.1 is obtained from Proposition 4.3 by taking \(m = 2 \) and \(\delta_t = 3 \) for all \(t \geq 1 \).
Measures which are \((L^q, L^p)\) multipliers

Proof of Proposition 1.5. We are in the case \(m = 2\) and \(\delta_t = \delta > 3\) for all \(t \geq 1\). Let \(j\) be a positive integer. Observe that for any non-negative integer \(k\), any \(l \in \{1, 2, \ldots, 2^j + k\}\), \(E^{j+k}_l = x_l^{j+k} + \left[0, \delta^{-j-k}\right]\) and \(\mu_\delta^2 (E^{j+k}_l) = 2^{-j-k}\). Set \(A_0 = [0, \delta^{-j}]\) and \(B_0 = A_0 - A_0 = (-\delta^{-j}, \delta^{-j})\). From Proposition 1.4 we obtain

\[
|B_0|^{-\frac{1}{q}} |A_0|^{-\frac{1}{p}} \left(\sum_{l=1}^{2^j} \mu_\delta^2 (E^j_l)^p\right)^{\frac{1}{p}} \leq c(\mu_\delta^2, p, q).
\]

Observe that for fixed \(l\) in \(\{1, 2, \ldots, 2^j\}\), \(E^j_l\) contains two intervals \(E^{j+1}_{l,1}\) and \(E^{j+1}_{l,2}\) satisfying

\[
\mu_\delta^2 (E^j_l) = \mu_\delta^2 (E^{j+1}_{l,1} \cup E^{j+1}_{l,2})
\]

and

\[
E^{j+1}_{l,1} \cup E^{j+1}_{l,2} = x_l^{j} + \left([0, \delta^{-j-1}] \cup [\delta^{-j} - \delta^{-j-1}, \delta^{-j}]\right).
\]

Setting \(A_1 = [0, \delta^{-j-1}] \cup [\delta^{-j} - \delta^{-j-1}, \delta^{-j}]\) and applying Proposition 1.4 we obtain

\[
|A_1 - A_1|^{-\frac{1}{q}} |A_1|^{-\frac{1}{p}} \left(\sum_{l=1}^{2^j} \mu_\delta^2 (E^j_l)^p\right)^{\frac{1}{p}} \leq c(\mu_\delta^2, p, q).
\]

But each preceding interval \(E^{j+1}_{l,1}, i \in \{1, 2\}\), contains two intervals \(E^{j+2}_{l,1}\) and \(E^{j+2}_{l,2}\) such that

\[
\mu_\delta^2 (E^{j+1}_{l,1}) = \mu_\delta^2 (E^{j+2}_{l,1} \cup E^{j+2}_{l,2}) = \frac{1}{2^{j+1}}.
\]

Moreover

\[
\bigcup_{l=1}^{2} (E^{j+2}_{l,1} \cup E^{j+2}_{l,2}) = x_l^{j} + A_2
\]

where

\[
A_2 = \left[0, \delta^{-j-2}\right] \cup [\delta^{-j-1} - \delta^{-j-2}, \delta^{-j-1}] \cup [\delta^{-j} - \delta^{-j-1} + \delta^{-j-2}, \delta^{-j}].
\]

This remark enables us to apply again Proposition 1.4. Thus we obtain

\[
|A_2 - A_2|^{-\frac{1}{q}} |A_2|^{-\frac{1}{p}} \left(\sum_{l=1}^{2^j} \mu_\delta^2 (E^j_l)^p\right)^{\frac{1}{p}} \leq c(\mu_\delta^2, p, q).
\]

349
The iteration of the process leads us to two sequences of sets \((A_k)_{k \geq 0}\) and \((\widetilde{A}_k)_{k \geq 0}\) defined by:

\[
A_{k+1} = \frac{1}{\delta} A_k \cup \left(\delta^{-j} - \frac{1}{\delta} \widetilde{A}_k \right), \quad \widetilde{A}_{k+1} = \frac{1}{\delta} \widetilde{A}_k \cup \left(\delta^{-j} - \frac{1}{\delta} A_k \right)
\]

with \(A_0 = [0, \delta^{-j}], \widetilde{A}_0 = (0, \delta^{-j}]\) and satisfying

\[
|B_k|^{-\frac{1}{q}} |A_k|^{\frac{1}{p}} \left(\sum_{l=1}^{2^j} \mu^2_k \left(E^j_l \right)^p \right)^{\frac{1}{p}} \leq c \left(\mu^2_k, p, q \right),
\]

where \(B_k = A_k - \widetilde{A}_k\) for all \(k \geq 0\).

Notice that \(A_0 - A_0 = \widetilde{A}_0 - \widetilde{A}_0\) and \(|A_0| = |\widetilde{A}_0|\). Furthermore, for any \(k \geq 0\), clearly \(A_{k+1} - A_{k+1} = \widetilde{A}_{k+1} - \widetilde{A}_{k+1}\) and since \(\frac{1}{\delta} A_k \cap \left(\delta^{-j} - \frac{1}{\delta} \widetilde{A}_k \right) = \emptyset = \frac{1}{\delta} \widetilde{A}_k \cap \left(\delta^{-j} - \frac{1}{\delta} A_k \right)\)

we have \(|A_{k+1}| = |\widetilde{A}_{k+1}|\). Thus

\[
A_k - A_k = \widetilde{A}_k - \widetilde{A}_k \quad \text{and} \quad |A_k| = |\widetilde{A}_k|, \quad k \geq 0.
\]

Observe that: \(|A_0| = \delta^{-j}, \ |A_1| = 2\delta^{-j-1}\) and \(|A_2| = 2^2\delta^{-j-2}\). Suppose that for some integer \(k \geq 0, |A_k| = 2^k\delta^{-j-k}\). By the preceding remarks we get \(|A_{k+1}| = \frac{1}{\delta} |A_k| + \frac{1}{\delta} |\widetilde{A}_k| = \frac{2}{\delta} |A_k| = 2^{k+1}\delta^{-j-(k+1)}\). We conclude that

\[
|A_k| = 2^k\delta^{-j-k}, \quad k \geq 0.
\]

Notice that \(A_0 + \widetilde{A}_0 = (0, 2\delta^{-j}) = \delta^{-j} - (\delta^{-j}, \delta^{-j}) = \delta^{-j} - (A_0 - A_0) = \delta^{-j} - B_0\). Furthermore, for any \(k \geq 0\), on the one hand

\[
B_{k+1} = \left[\frac{1}{\delta} A_k \cup \left(\delta^{-j} - \frac{1}{\delta} \widetilde{A}_k \right) \right] - \left[\frac{1}{\delta} A_k \cup \left(\delta^{-j} - \frac{1}{\delta} \widetilde{A}_k \right) \right]
\]

\[
= \frac{1}{\delta} (A_k - A_k) \cup \left(\frac{1}{\delta} (A_k + \widetilde{A}_k) - \delta^{-j} \right) \cup \left(\delta^{-j} - \frac{1}{\delta} (\widetilde{A}_k + A_k) \right) \cup \frac{1}{\delta} (\widetilde{A}_k - \widetilde{A}_k)
\]

\[
= \frac{1}{\delta} (A_k - A_k) \cup \left(\frac{1}{\delta} (A_k + \widetilde{A}_k) - \delta^{-j} \right) \cup \left(\delta^{-j} - \frac{1}{\delta} (\widetilde{A}_k + A_k) \right)
\]

(because of (4.3))

350
and on the other hand
\[
A_{k+1} + \tilde{A}_{k+1} = \frac{1}{\delta} (A_k + \tilde{A}_k) \cup \left(\delta^{-j} + \frac{1}{\delta} (A_k - A_k) \right) \cup \\
\cup \left(\delta^{-j} + \frac{1}{\delta} (\tilde{A}_k - \tilde{A}_k) \right) \cup \left(2\delta^{-j} - \frac{1}{\delta} (\tilde{A}_k + A_k) \right) \\
= \frac{1}{\delta} (A_k + \tilde{A}_k) \cup \left(\delta^{-j} + \frac{1}{\delta} (A_k - A_k) \right) \cup \\
\cup \left(2\delta^{-j} - \frac{1}{\delta} (\tilde{A}_k + A_k) \right) \quad \text{(because of (4.3))}
\]
and so \(A_{k+1} + \tilde{A}_{k+1} = \delta^{-j} - B_{k+1} \). Thus
\[
|A_k - A_k| = |A_k + \tilde{A}_k|, \quad k \geq 0. \tag{4.4}
\]
Notice that for all \(k \geq 0 \), the sets \(\frac{1}{\delta} (A_k - A_k), \frac{1}{\delta} (A_k + \tilde{A}_k) - \delta^{-j} \) and \(\delta^{-j} - \frac{1}{\delta} (\tilde{A}_k + A_k) \) form a partition of \(B_{k+1} \). Thus, by (4.4) we have \(|B_{k+1}| = \frac{3}{\delta} |A_k - A_k| = \frac{3}{\delta} |B_k|, \ k \geq 0 \). As \(|B_0| = 2\delta^{-j} \), we conclude that for all \(k \geq 0 \), \(|B_k| = \left(\frac{3}{\delta} \right)^k 2\delta^{-j} \).

Finally, using inequality (4.2) we get:
\[
2 \left(\frac{3}{\delta} \right)^k \delta^{-j} \left(2^{k \delta^{-j-k}} \right)^{\frac{1}{p}} 2^{j \left(\frac{1}{p} - 1 \right)} \leq c \left(\mu_2, p, q \right), \quad k \geq 0, \ j \geq 1
\]
\[
2^{-\frac{1}{q}} \left(3^{-\frac{1}{q}} \delta^{-\frac{1}{q}} - \frac{1}{\delta} \frac{1}{2} 2^\frac{1}{p} \right)^k \left(\delta^{-\frac{1}{q}} - \frac{1}{\delta} \frac{1}{p} \frac{1}{2} - 1 \right)^j \leq c \left(\mu_2, p, q \right), \quad k \geq 0, \ j \geq 1
\]
\[
3^{-\frac{1}{q}} \delta^{-\frac{1}{q}} - \frac{1}{\delta} \frac{1}{2} 2^\frac{1}{p} \leq 1 \quad \text{and} \quad \delta^{-\frac{1}{q}} - \frac{1}{\delta} \frac{1}{p} \frac{1}{2} - 1 \leq 1
\]
\[
p \leq \frac{\log \left(\frac{\delta}{2} \right)}{\log \left(\frac{\delta}{3} \right)} q \quad \text{and} \quad \frac{1}{q} + \left(1 - \frac{\log 2}{\log \delta} \right) \left(1 - \frac{1}{p} \right) \leq 1.
\]
References

Measures which are \((L^q, L^p)\) multipliers

BÉRENGER AKON KPATA
UFR Mathématiques et Informatique
Université de Cocody
22 BP 582 Abidjan 22
kpata_akon@yahoo.fr

IBRAHIM FOFANA
UFR Mathématiques et Informatique
Université de Cocody
22 BP 582 Abidjan 22
fofana_ib_math_ab@yahoo.fr

KONIN KOUA
UFR Mathématiques et Informatique
Université de Cocody
22 BP 582 Abidjan 22
kroubla@yahoo.fr