Some examples of harmonic maps for g-natural metrics
Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 305-320.

On produit des nouveaux exemples d’applications harmoniques, ayant chacune comme espace de départ une variété (M,g) á courbure constante et comme espace d’arrivée son fibré tangent TM, muni d’une métrique g-naturelle Riemannienne appropriée. En particulier, on va déterminer une famille de métriques g-naturelles Riemanniennes G sur T𝕊 2 , par rapport auxquelles tous les champs de vecteurs gradients conformes définissent des applications harmoniques de 𝕊 2 dans (T𝕊 2 ,G).

We produce new examples of harmonic maps, having as source manifold a space (M,g) of constant curvature and as target manifold its tangent bundle TM, equipped with a suitable Riemannian g-natural metric. In particular, we determine a family of Riemannian g-natural metrics G on T𝕊 2 , with respect to which all conformal gradient vector fields define harmonic maps from 𝕊 2 into (T𝕊 2 ,G).

DOI : 10.5802/ambp.269
Classification : 58E20, 53C43
Mots clés : harmonic map, tangent bundle, vector fields, $g$-natural metrics, spaces of constant curvature.

Mohamed Tahar Kadaoui Abbassi 1 ; Giovanni Calvaruso 2 ; Domenico Perrone 2

1 Département des Mathématiques, Faculté des sciences Dhar El Mahraz, Université Sidi Mohamed Ben Abdallah, B.P. 1796, Fès-Atlas, Fès, Morocco
2 Dipartimento di Matematica “E. De Giorgi”, Università del Salento, 73100 Lecce, ITALY.
@article{AMBP_2009__16_2_305_0,
     author = {Mohamed Tahar Kadaoui Abbassi and Giovanni Calvaruso and Domenico Perrone},
     title = {Some examples of harmonic maps for $g$-natural metrics},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {305--320},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {16},
     number = {2},
     year = {2009},
     doi = {10.5802/ambp.269},
     mrnumber = {2568868},
     zbl = {1183.58008},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/}
}
TY  - JOUR
AU  - Mohamed Tahar Kadaoui Abbassi
AU  - Giovanni Calvaruso
AU  - Domenico Perrone
TI  - Some examples of harmonic maps for $g$-natural metrics
JO  - Annales mathématiques Blaise Pascal
PY  - 2009
SP  - 305
EP  - 320
VL  - 16
IS  - 2
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/
DO  - 10.5802/ambp.269
LA  - en
ID  - AMBP_2009__16_2_305_0
ER  - 
%0 Journal Article
%A Mohamed Tahar Kadaoui Abbassi
%A Giovanni Calvaruso
%A Domenico Perrone
%T Some examples of harmonic maps for $g$-natural metrics
%J Annales mathématiques Blaise Pascal
%D 2009
%P 305-320
%V 16
%N 2
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/
%R 10.5802/ambp.269
%G en
%F AMBP_2009__16_2_305_0
Mohamed Tahar Kadaoui Abbassi; Giovanni Calvaruso; Domenico Perrone. Some examples of harmonic maps for $g$-natural metrics. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 305-320. doi : 10.5802/ambp.269. https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/

[1] M. T. K. Abbassi; G. Calvaruso; D. Perrone Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics (2007) (Submitted, online version: arXiv:math/0710.3668) | MR | Zbl

[2] Mohamed Tahar Kadaoui Abbassi; Maâti Sarih On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), Volume 41 (2005) no. 1, pp. 71-92 | EuDML | MR | Zbl

[3] Mohamed Tahar Kadaoui Abbassi; Maâti Sarih On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl., Volume 22 (2005) no. 1, pp. 19-47 | DOI | MR | Zbl

[4] Paul Baird; John C. Wood Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press Oxford University Press, Oxford, 2003 | MR | Zbl

[5] M. Benyounes; E. Loubeau; C. M. Wood Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl., Volume 25 (2007) no. 3, pp. 322-334 | DOI | MR | Zbl

[6] M. Benyounes; E. Loubeau; C.M. Wood Harmonic maps and sections on spheres (2008) (preprint)

[7] J. Eells; L. Lemaire A report on harmonic maps, Bull. London Math. Soc., Volume 10 (1978) no. 1, pp. 1-68 | DOI | MR | Zbl

[8] James Eells; J. H. Sampson Harmonic mappings of Riemannian manifolds, Amer. J. Math., Volume 86 (1964), pp. 109-160 | DOI | MR | Zbl

[9] Tôru Ishihara Harmonic sections of tangent bundles, J. Math. Tokushima Univ., Volume 13 (1979), pp. 23-27 | MR | Zbl

[10] Ivan Kolář; Peter W. Michor; Jan Slovák Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR | Zbl

[11] Odette Nouhaud Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B, Volume 284 (1977) no. 14, p. A815-A818 | MR | Zbl

[12] C. Oniciuc The tangent bundles and harmonicity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 43 (1997) no. 1, p. 151-172 (1998) | MR | Zbl

[13] J. H. Sampson Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4), Volume 11 (1978) no. 2, pp. 211-228 | Numdam | MR | Zbl

[14] Aristide Sanini Maps between Riemannian manifolds with critical energy with respect to deformations of metrics, Rend. Mat. (7), Volume 3 (1983) no. 1, pp. 53-63 | MR | Zbl

[15] Hajime Urakawa Calculus of variations and harmonic maps, Translations of Mathematical Monographs, 132, American Mathematical Society, Providence, RI, 1993 (Translated from the 1990 Japanese original by the author) | MR | Zbl

[16] Y. L. Xin Some results on stable harmonic maps, Duke Math. J., Volume 47 (1980) no. 3, pp. 609-613 | DOI | MR | Zbl

Cité par Sources :