On produit des nouveaux exemples d’applications harmoniques, ayant chacune comme espace de départ une variété á courbure constante et comme espace d’arrivée son fibré tangent , muni d’une métrique -naturelle Riemannienne appropriée. En particulier, on va déterminer une famille de métriques -naturelles Riemanniennes sur , par rapport auxquelles tous les champs de vecteurs gradients conformes définissent des applications harmoniques de dans .
We produce new examples of harmonic maps, having as source manifold a space of constant curvature and as target manifold its tangent bundle , equipped with a suitable Riemannian -natural metric. In particular, we determine a family of Riemannian -natural metrics on , with respect to which all conformal gradient vector fields define harmonic maps from into .
Mots clés : harmonic map, tangent bundle, vector fields, $g$-natural metrics, spaces of constant curvature.
Mohamed Tahar Kadaoui Abbassi 1 ; Giovanni Calvaruso 2 ; Domenico Perrone 2
@article{AMBP_2009__16_2_305_0, author = {Mohamed Tahar Kadaoui Abbassi and Giovanni Calvaruso and Domenico Perrone}, title = {Some examples of harmonic maps for $g$-natural metrics}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {305--320}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {16}, number = {2}, year = {2009}, doi = {10.5802/ambp.269}, mrnumber = {2568868}, zbl = {1183.58008}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/} }
TY - JOUR AU - Mohamed Tahar Kadaoui Abbassi AU - Giovanni Calvaruso AU - Domenico Perrone TI - Some examples of harmonic maps for $g$-natural metrics JO - Annales mathématiques Blaise Pascal PY - 2009 SP - 305 EP - 320 VL - 16 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/ DO - 10.5802/ambp.269 LA - en ID - AMBP_2009__16_2_305_0 ER -
%0 Journal Article %A Mohamed Tahar Kadaoui Abbassi %A Giovanni Calvaruso %A Domenico Perrone %T Some examples of harmonic maps for $g$-natural metrics %J Annales mathématiques Blaise Pascal %D 2009 %P 305-320 %V 16 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/ %R 10.5802/ambp.269 %G en %F AMBP_2009__16_2_305_0
Mohamed Tahar Kadaoui Abbassi; Giovanni Calvaruso; Domenico Perrone. Some examples of harmonic maps for $g$-natural metrics. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 305-320. doi : 10.5802/ambp.269. https://ambp.centre-mersenne.org/articles/10.5802/ambp.269/
[1] Harmonic sections of tangent bundles equipped with Riemannian -natural metrics (2007) (Submitted, online version: arXiv:math/0710.3668) | MR | Zbl
[2] On natural metrics on tangent bundles of Riemannian manifolds, Arch. Math. (Brno), Volume 41 (2005) no. 1, pp. 71-92 | EuDML | MR | Zbl
[3] On some hereditary properties of Riemannian -natural metrics on tangent bundles of Riemannian manifolds, Differential Geom. Appl., Volume 22 (2005) no. 1, pp. 19-47 | DOI | MR | Zbl
[4] Harmonic morphisms between Riemannian manifolds, London Mathematical Society Monographs. New Series, 29, The Clarendon Press Oxford University Press, Oxford, 2003 | MR | Zbl
[5] Harmonic sections of Riemannian vector bundles, and metrics of Cheeger-Gromoll type, Differential Geom. Appl., Volume 25 (2007) no. 3, pp. 322-334 | DOI | MR | Zbl
[6] Harmonic maps and sections on spheres (2008) (preprint)
[7] A report on harmonic maps, Bull. London Math. Soc., Volume 10 (1978) no. 1, pp. 1-68 | DOI | MR | Zbl
[8] Harmonic mappings of Riemannian manifolds, Amer. J. Math., Volume 86 (1964), pp. 109-160 | DOI | MR | Zbl
[9] Harmonic sections of tangent bundles, J. Math. Tokushima Univ., Volume 13 (1979), pp. 23-27 | MR | Zbl
[10] Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | MR | Zbl
[11] Applications harmoniques d’une variété riemannienne dans son fibré tangent. Généralisation, C. R. Acad. Sci. Paris Sér. A-B, Volume 284 (1977) no. 14, p. A815-A818 | MR | Zbl
[12] The tangent bundles and harmonicity, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), Volume 43 (1997) no. 1, p. 151-172 (1998) | MR | Zbl
[13] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. (4), Volume 11 (1978) no. 2, pp. 211-228 | Numdam | MR | Zbl
[14] Maps between Riemannian manifolds with critical energy with respect to deformations of metrics, Rend. Mat. (7), Volume 3 (1983) no. 1, pp. 53-63 | MR | Zbl
[15] Calculus of variations and harmonic maps, Translations of Mathematical Monographs, 132, American Mathematical Society, Providence, RI, 1993 (Translated from the 1990 Japanese original by the author) | MR | Zbl
[16] Some results on stable harmonic maps, Duke Math. J., Volume 47 (1980) no. 3, pp. 609-613 | DOI | MR | Zbl
Cité par Sources :