In connection with the emerging theory of Garside categories, we develop the notions of a left-Garside category and of a locally left-Garside monoid. In this framework, the relationship between the self-distributivity law LD and braids amounts to the result that a certain category associated with LD is a left-Garside category, which projects onto the standard Garside category of braids. This approach leads to a realistic program for establishing the Embedding Conjecture of [Dehornoy, Braids and Self-distributivity, Birkhaüser (2000), Chap. IX].
Mots clés : Garside category, Garside monoid, self-distributivity, braid, greedy normal form, least common multiple, LD-expansion
Patrick Dehornoy 1
@article{AMBP_2009__16_2_189_0, author = {Patrick Dehornoy}, title = {Left-Garside categories, self-distributivity, and braids}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {189--244}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {16}, number = {2}, year = {2009}, doi = {10.5802/ambp.263}, mrnumber = {2568862}, zbl = {1183.18004}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.263/} }
TY - JOUR AU - Patrick Dehornoy TI - Left-Garside categories, self-distributivity, and braids JO - Annales mathématiques Blaise Pascal PY - 2009 SP - 189 EP - 244 VL - 16 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.263/ DO - 10.5802/ambp.263 LA - en ID - AMBP_2009__16_2_189_0 ER -
%0 Journal Article %A Patrick Dehornoy %T Left-Garside categories, self-distributivity, and braids %J Annales mathématiques Blaise Pascal %D 2009 %P 189-244 %V 16 %N 2 %I Annales mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.263/ %R 10.5802/ambp.263 %G en %F AMBP_2009__16_2_189_0
Patrick Dehornoy. Left-Garside categories, self-distributivity, and braids. Annales mathématiques Blaise Pascal, Tome 16 (2009) no. 2, pp. 189-244. doi : 10.5802/ambp.263. https://ambp.centre-mersenne.org/articles/10.5802/ambp.263/
[1] Fragments of the word Delta in a braid group, Mat. Zametki Acad. Sci. SSSR, Volume 36 (1984) no. 1, pp. 25-34 (Russian); English translation in Math. Notes of the Acad. Sci. USSR 36 (1984), no. 1, p. 505–510 | MR | Zbl
[2] Garside categories, periodic loops and cyclic sets (math.GR/0610778)
[3] The dual braid monoid, Ann. Sci. École Norm. Sup., Volume 36 (2003), pp. 647-683 | Numdam | MR | Zbl
[4] A dual braid monoid for the free group, J. Algebra, Volume 302 (2006), pp. 55-69 | DOI | MR
[5] Garside structure for the braid group of G(e,e,r) (math.GR/0306186)
[6] Conjugacy in Garside groups I: Cyclings, powers and rigidity, Groups Geom. Dyn., Volume 1 (2007), pp. 221-279 | DOI | MR | Zbl
[7] Conjugacy in Garside groups III: Periodic braids, J. Algebra, Volume 316 (2007), pp. 746-776 | DOI | MR
[8] Conjugacy in Garside groups II: Structure of the ultra summit set, Groups Geom. Dyn., Volume 2 (2008), pp. 16-31 | MR | Zbl
[9] A new approach to the word problem in the braid groups, Adv. Math., Volume 139 (1998) no. 2, pp. 322-353 | DOI | MR | Zbl
[10] Artin-Gruppen und Coxeter-Gruppen, Invent. Math., Volume 17 (1972), pp. 245-271 | DOI | MR | Zbl
[11] Introductory notes on Richard Thompson’s groups, Enseign. Math., Volume 42 (1996), pp. 215-257 | MR | Zbl
[12] Artin groups of finite type are biautomatic, Math. Ann., Volume 292 (1992) no. 4, pp. 671-683 | DOI | MR | Zbl
[13] The language of geodesics for Garside groups, Math. Zeitschr., Volume 248 (2004), pp. 495-509 | DOI | MR | Zbl
[14] Bestvina’s normal form complex and the homology of Garside groups, Geom. Dedicata, Volume 105 (2004), pp. 171-188 | DOI | MR | Zbl
[15] Representations of the braid group by automorphisms of groups, invariants of links, and Garside groups, Pac. J. Maths, Volume 221 (2005), pp. 1-27 | DOI | MR | Zbl
[16] -complete families of elementary sequences, Ann. P. Appl. Logic, Volume 38 (1988), pp. 257-287 | DOI | MR | Zbl
[17] Free distributive groupoids, J. Pure Appl. Algebra, Volume 61 (1989), pp. 123-146 | DOI | MR | Zbl
[18] Braids and Self-Distributivity, Progr. Math., 192, Birkhäuser, 2000 | MR | Zbl
[19] Groupes de Garside, Ann. Sci. École Norm. Sup. (4), Volume 35 (2002), pp. 267-306 | Numdam | MR | Zbl
[20] Study of an identity, Algebra Universalis, Volume 48 (2002), pp. 223-248 | DOI | MR | Zbl
[21] Complete positive group presentations, J. Algebra, Volume 268 (2003), pp. 156-197 | DOI | MR | Zbl
[22] Geometric presentations of Thompson’s groups, J. Pure Appl. Algebra, Volume 203 (2005), pp. 1-44 | DOI | MR | Zbl
[23] Gaussian groups and Garside groups, two generalisations of Artin groups, Proc. London Math. Soc., Volume 79 (1999) no. 3, pp. 569-604 | DOI | MR | Zbl
[24] Ordering braids, Math. Surveys and Monographs vol. 148, Amer. Math. Soc., 2008 | MR | Zbl
[25] Representations of reductive groups over finite fields, Ann. of Math., Volume 103 (1976), pp. 103-161 | DOI | MR | Zbl
[26] Présentations duales pour les groupes de tresses de type affine , Comm. Math. Helvetici, Volume 8 (2008), pp. 23-47 | MR | Zbl
[27] Garside and locally Garside categories (arXiv: math.GR/0612652)
[28] Algorithms for positive braids, Quart. J. Math. Oxford Ser., Volume 45 (1994) no. 2, pp. 479-497 | DOI | MR | Zbl
[29] Word Processing in Groups, Jones and Bartlett Publ., 1992 | MR | Zbl
[30] Racks and links in codimension 2, J. Knot Theory Ramifications, Volume 1 (1992), pp. 343-406 | DOI | MR | Zbl
[31] Conjugacy problem for braid groups and Garside groups, J. Algebra, Volume 266 (2003), pp. 112-132 | DOI | MR | Zbl
[32] The braid group and other groups, Quart. J. Math. Oxford Ser., Volume 20 (1969), pp. 235-254 | DOI | MR | Zbl
[33] A new approach to the conjugacy problem in Garside groups, J. Algebra, Volume 292 (2005), pp. 282-302 | DOI | MR | Zbl
[34] Parabolic subgroups of Garside groups II (math.GR/0811.0751)
[35] Normalisateurs et centralisateurs des sous-groupes paraboliques dans les groupes d’Artin-Tits, Université d’Amiens (2001) (PhD. Thesis)
[36] Parabolic subgroups of Garside groups, J. Algebra, Volume 317 (2007), pp. 1-16 | DOI | MR
[37] A classifying invariant of knots: the knot quandle, J. Pure Appl. Algebra, Volume 23 (1982), pp. 37-65 | DOI | MR | Zbl
[38] Braid groups, Grad. Texts in Math., Springer Verlag, 2008 | MR
[39] A class of Garside groupoid structures on the pure braid group, Trans. Amer. Math. Soc., Volume 360 (2008), pp. 4029-4061 | DOI | MR
[40] Categories for the Working Mathematician, Grad. Texts in Math., Springer Verlag, 1998 | MR | Zbl
[41] The left distributive law and the freeness of an algebra of elementary embeddings, Adv. Math., Volume 91 (1992) no. 2, pp. 209-231 | DOI | MR | Zbl
[42] A Garside-theoretic approach to the reducibility problem in braid groups, J. Algebra, Volume 320 (2008), pp. 783-820 | DOI | MR
[43] Garside groups are strongly translation discrete, J. Algebra, Volume 309 (2007), pp. 594-609 | DOI | MR | Zbl
[44] Distributive groupoids in knot theory, Sb. Math., Volume 119 (1982) no. 1-2, pp. 78-88 | MR | Zbl
[45] An introduction to Garside structures (2005) (circulated notes)
[46] Garside monoids vs. divisibility monoids, Math. Struct. in Comp. Sci., Volume 15 (2005) no. 2, pp. 231-242 | DOI | MR | Zbl
[47] Tame Garside monoids, J. Algebra, Volume 281 (2004), pp. 487-501 | DOI | MR | Zbl
[48] Finite state algorithms for the braid group (1988) (circulated notes)
Cité par Sources :