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Left-Garside categories, self-distributivity, and
braids

PATRICK DEHORNOY

Abstract

In connection with the emerging theory of Garside categories, we develop
the notions of a left-Garside category and of a locally left-Garside monoid. In
this framework, the relationship between the self-distributivity law LD and braids
amounts to the result that a certain category associated with LD is a left-Garside
category, which projects onto the standard Garside category of braids. This ap-
proach leads to a realistic program for establishing the Embedding Conjecture of
[Dehornoy, Braids and Self-distributivity, Birkhatiser (2000), Chap. IX].

The notion of a Garside monoid emerged at the end of the 1990’s [23, 19]
as a development of Garside’s theory of braids [32], and it led to many
developments [2, 4, 5, 6, 8, 7, 14, 13, 15, 31, 33, 36, 43, 42, 45, 46, 47, ...].
More recently, Bessis [3], Digne-Michel [27], and Krammer [39] introduced
the notion of a Garside category as a further extension, and they used it to
capture new nontrivial examples and improve our understanding of their
algebraic structure. The concept of a Garside category is also used in [34],
and it is already implicit in [25] and [35], and maybe in many diagrams
of [18].

In this paper we describe and investigate a new example of (left)-
Garside category, namely a certain category LD" associated with the left
self-distributivity law

z(yz) = (zy)(z2). (LD)
The interest in this law originated in the discovery of several nontrivial
structures that obey it, in set theory [16, 41] and in low-dimensional topol-
ogy [37, 30, 44]. A rather extensive theory was developed in the decade
1985-95 [18]. Investigating self-distributivity in the light of Garside cate-
gories seems to be a good idea. It turns out that a large part of the theory
developed so far can be summarized into one single statement, namely

Keywords: Garside category, Garside monoid, self-distributivity, braid, greedy normal

form, least common multiple, LD-expansion.
Math. classification: 18B40, 20N02, 20F36.
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P. DEHORNOY

The category LD is a left-Garside category,

(this is the first part of Theorem 6.1 below).

The interest of the approach should be at least triple. First, it gives
an opportunity to restate a number of previously unrelated properties in
a new language that should make them more easily understandable. In
particular, the connection between self-distributivity and braids is now
expressed in the simple statement:

There exists a right-lecm preserving surjective functor of LD
to the Garside category of positive braids,

(second part of Theorem 6.1). This result allows one to recover most of the
usual algebraic properties of braids as a direct application of the properties
of LD": roughly speaking, Garside’s theory of braids is the emerged part
if an iceberg, namely the algebraic theory of self-distributivity.

Second, a direct outcome of the current approach is a realistic program
for establishing the Embedding Conjecture. The latter is the most puzzling
open question involving free self-distributive systems. Among others, it
says that the equivalence class of any bracketed expression under self-
distributivity is a semilattice, i.e., any two expressions admit a least upper
bound with respect to a certain partial ordering. Many equivalent forms of
the conjecture are known [18, Chapter IX]. At the moment, no complete
proof is available, but we establish the following new result

Unless the left-Garside category LD is not regular, the
Embedding Conjecture is true,

(Theorem 6.2). This result reduces a possible proof of the conjecture to a
(long) sequence of verifications.

Third, the category LD seems to be a seminal example of a left-Garside
category, quite different from all previously known examples of Garside
categories. In particular, being strongly asymmetric, LD is not a Garside
category. The interest of investigating such objects per se is not obvious,
but the existence of a nontrivial example such as £D" seems to be a
good reason, and a help for orientating further research. In particular, our
approach emphasizes the role of locally left-Garside monoids': this is a

IThis is not the notion of a locally Garside monoid in the sense of [27]; we think that
the name “preGarside” is more relevant for that notion, which involves no counterpart
of any Garside element or map, but is only the common substratum of all Garside
structures.
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LEFT-GARSIDE CATEGORIES

monoid M that fails to be Garside because no global element A exists, but
nevertheless possesses a family of elements A, that locally play the role
of the Garside element and are indexed by a set on which the monoid M
partially acts. Most of the properties of left-Garside monoids extend to
locally left-Garside monoids, in particular the existence of least common
multiples and, in good cases, of the greedy normal form.

Our definition of a left-Garside category is borrowed from [27] (up to
a slight change in the formal setting, see Remark 2.6). Several proofs in
Sections 2 and 3 use arguments that are already present, in one form
or another, in [1, 48, 28, 29, 12, 19, 35] and now belong to folklore. Most
appear in the unpublished paper [27] by Digne and Michel, and are implicit
in Krammer’s paper [39]. Our reasons for including such arguments here
is that adapting them to the current weak context requires some useful
polishing, and is necessary to explain our two main new notions, namely
locally Garside monoids and regular left-Garside categories.

The paper is organized in two parts. The first one (Sections 1 to 3)
contains those general results about left-Garside categories and locally
left-Garside monoids that will be needed in the sequel, in particular the
construction and properties of the greedy normal form. The second part
(Sections 4 to 8) deals with the specific case of the category £D' and
its connection with braids. Sections 4 and 5 review basic facts about the
self-distributivity law and explain the construction of the category £LD™.
Section 6 is devoted to proving that LD is a left-Garside category and
to showing how the results of Section 3 might lead to a proof of the Em-
bedding Conjecture. In Section 7, we show how to recover the classical
algebraic properties of braids from those of LD*. Finally, we explain in
Section 8 some alternative solutions for projecting £LD™ to braids. In an
appendix, we briefly describe what happens when the associativity law re-
places the self-distributivity law: here also a left-Garside category appears,
but a trivial one.

We use N for the set of all positive integers.

1. Left-Garside categories
We define left-Garside categories and describe a uniform way of construct-
ing such categories from so-called locally left-Garside monoids, which are

monoids with a convenient partial action.
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P. DEHORNOY

1.1. Left-Garside monoids

Let us start from the now classical notion of a Garside monoid. Essentially,
a Garside monoid is a monoid in which divisibility has good properties,
and, in addition, there exists a distinguished element A whose divisors
encode the whole structure. Slightly different versions have been consid-
ered [23, 19, 26], the one stated below now being the most frequently
used. In this paper, we are interested in one-sided versions involving left-
divisibility only, hence we shall first introduce the notion of a left-Garside
monoid.

Throughout the paper, if a,b are elements of a monoid—or, from Sec-
tion 1.2, morphisms of a category—we say that a left-divides b, or that a
is a left-divisor of b, denoted a < b, if there exists ¢ satisfying ac = b. The
set of all left-divisors of a is denoted by Div(a). If ac = b holds with ¢ # 1,
we say that a is a proper left-divisor of b, denoted a < b.

We shall always consider monoids M where < is a partial ordering. If
two elements a, b of M admit a greatest lower bound ¢ with respect to <,
the latter is called a greatest common left-divisor, or left-ged, of a and b,
denoted ¢ = ged(a, b). Similarly, a <-least upper bound d is called a least
common right-multiple, or right-lem, of a and b, denoted d = lem(a,b). We
say that M admits local right-lcm’s if any two elements of M that admit
a common right-multiple admit a right-lcm.

Finally, if M is a monoid and S, .S’ are subsets of M, we say that S left-
generates S if every nontrivial element of S’ admits at least one proper
left-divisor belonging to S.

Definition 1.1. A monoid M is called left-preGarside if

(LGg) for each a in M, every <-increasing sequence in Div(a) is finite,
(LG1) M is left-cancellative,
(LG2) M admits local right-lem’s.

An element A of M is called a left-Garside element if
(LG3) Div(A) left-generates M, and a < A implies A < aA.
A monoid M is called left-Garside if it is left-preGarside and possesses at

least one left-Garside element.

Using “generates” instead of “left-generates” in (LG3) would make no
difference, by the following trivial remark—but the assumption (LGp) is
crucial, of course.
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LEFT-GARSIDE CATEGORIES

Lemma 1.2. Assume that M is a monoid satisfying (LGo). Then every
subset S left-generating M generates M.

Proof. Let a be a nontrivial element of M. By definition there exist a3 # 1
in S and o’ satisfying a = a1d’. If @’ is trivial, we are done. Otherwise, there
exist as # 1 in S and a” satisfying a’ = asa”, and so on. The sequence 1,
ai, ajaz, ... is <-increasing and it lies in Div(a), hence it must be finite,
yielding a = ai...aq with ay,...,aq in S. [l

Right-divisibility is defined symmetrically: a right-divides b if b = ca
holds for some c. Then the notion of a right-(pre)Garside monoid is defined
by replacing left-divisibility by right-divisibility and left-product by right-
product in Definition 1.1.

Definition 1.3. A monoid M is called Garside with Garside element A
if M is both left-Garside with left-Garside element A and right-Garside
with right-Garside element A.

The equivalence of the above definition with that of [26] is easily checked.
The seminal example of a Garside monoid is the braid monoid B, equipped
with Garside’s fundamental braid A,,, see for instance [32, 29]. Other clas-
sical examples are free abelian monoids and, more generally, all spher-
ical Artin-Tits monoids [10], as well as the so-called dual Artin-Tits
monoids [9, 3]. Every Garside monoid embeds in a group of fractions,
which is then called a Garside group.

Let us mention that, if a monoid M is left-Garside, then mild condi-
tions imply that it is Garside: essentially, it is sufficient that M is right-
cancellative and that the left- and right-divisors of the left-Garside ele-
ment A coincide [19].

1.2. Left-Garside categories

Recently, it appeared that a number of results involving Garside monoids
still make sense in a wider context where categories replace monoids [3, 27,
39]. A category is similar to a monoid, but the product of two elements is
defined only when the target of the former is the source of the latter. In the
case of Garside monoids, the main benefit of considering categories is that
it allows for relaxing the existence of the global Garside element A into a
weaker, local version depending on the objects of the category, namely a
map from the objects to the morphisms.
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P. DEHORNOY

We refer to [40] for some basic vocabulary about categories—we use
very little of it here.

Notation 1.4. Throughout the paper, composition of morphisms is de-
noted by a multiplication on the right: fg means “f then ¢”. If f is a
morphism, the source of f is denoted 0y f, and its target is denoted 0 f.
In all examples, we shall make the source and target explicit: morphisms
are triples (z, f,y) satisfying

80($,f,y)::r, 81(:c,f,y):y.
A morphism f is said to be nontrivial if f # 15, holds.

We extend to categories the terminology of divisibility. So, we say that
a morphism f is a left-divisor of a morphism g, denoted f < g, if there
exists h satisfying fh = g¢. If, in addition, A can be assumed to be non-
trivial, we say that f < g holds. Note that f < g implies 0o f = dpg. We
denote by Div(f) the collection of all left-divisors of f.

The following definition is equivalent to Definition 2.10 given by F. Digne
and J. Michel in [27] (see Remark 2.6 below).

Definition 1.5. A category C is called left-preGarside if

(LGp) for each f in Hom(C), every <-ascending sequence in Div(f) is
finite,

(LG1) Hom(C) admits left-cancellation,

(LG2) Hom(C) admits local right-lem’s.
A map A : Obj(C) — Hom(C) is called a left-Garside map if, for each
object x, we have JpA(x) = x and

(LG3) Div(A(z)) left-generates Hom(x,—), and f < A(z) implies
Az) < fAOL).
A category C is called left-Garside if it is left-preGarside and possesses at
least one left-Garside map.

Ezxample 1.6. Assume that M is a left-Garside monoid with left-Garside
element A. One trivially obtains a left-Garside category C(M) by putting

Obj(C(M)) = {1}, Hom(C(M)) = {1} x M x {1}, A1) = A.
Another left-Garside category Cy can be attached with M , namely taking

~ -~

Obj(C(M)) =M, Hom(C(M))={(a,b,c)|ab=c}, A(a)=A.
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~

It is natural to call C(M) the Cayley category of M since its graph is the
Cayley graph of M (defined provided M is also right-cancellative).

The notion of a right-Garside category is defined symmetrically, ex-
changing left and right everywhere and exchanging the roles of source and
target. In particular, the map A and Axiom (LG3) are to be replaced by a
map V satisfying 9,V (z) = x and, using b = a for “a right-divides b”,

(LGs) V(y) right-generates Hom(—,y), and V(y) 3= f implies
V(0oy)f = V(y).

Then comes the natural two-sided version of a Garside category [3, 27].

Definition 1.7. A category C is called Garside with Garside map A if
C is left-Garside with left-Garside map A and right-Garside with right-
Garside map V satisfying A(z) = V(01(A(z)) and V(y) = A(G(V(y))
for all objects x, y.

It is easily seen that, if M is a Garside monoid, then the categories C(M)
and C(M) of Example (1.6) are Garside categories. Insisting that the
maps A and V involved in the left- and right-Garside structures are con-
nected as in Definition 1.7 is crucial: see Appendix for a trivial example

where the connection fails.

1.3. Locally left-Garside monoids

We now describe a general method for constructing a left-Garside cat-
egory starting from a monoid equipped with a partial action on a set.
The trivial examples of Example 1.6 enter this family, and so do the two
categories LD' and B* investigated in the second part of this paper.

We start with a convenient notion of partial action of a monoid on a
set. Several definitions could be thought of; here we choose the one that
is directly adapted to the subsequent developments.

Definition 1.8. Assume that M is a monoid. A not necessarily every-
where defined function a@ : M — (X — X) is called a partial (right)
action of M on X if, writing x « a for a(a)(z),

(1) x « 1 = x holds for each z in X,

(77) (zea) «b = x « ab holds for all x, a, b, this meaning that either both
terms are defined and they are equal, or neither is defined,

(t31) for each finite subset S in M, there exists x in X such that xea is
defined for each a in S.
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P. DEHORNOY

In the above context, for each z in X, we put
M,={a€ M| z.+ais defined }. (1.1)
Then Conditions (7), (i7), (i73) of Definition 1.8 imply
leM,, abe M, < (a€ M, &be M,,,), VfiniteS Jz(S C M,).

A monoid action in the standard sense, i.e., an everywhere defined
action, is a partial action. For a more typical case, consider the n-strand
Artin braid monoid B;}. We recall that B, is defined for n < oo by the
monoid presentation

B . +
B ={oy,...0 oi0p =050 for =gl =2 2N g
n 1> » Yn—1 0-10-]0-1 = O-]o-lo-] for ‘7/ *j’ =1

Then we obtain a partial action of BY on N by putting

{ n if a belongs to B!,
Nnead =

) (1.3)
undefined otherwise.

A natural category can then be associated with every partial action of
a monoid.

Definition 1.9. For a a partial action of a monoid M on a set X, the
category associated with o, denoted C(«), or C(M, X) if the action is clear,
is defined by

Obj(C(M, X)) =X, Hom(C(M,X))={(z,a,xea)|ze X, ac M}

Ezxample 1.10. We shall denote by B*t the category associated with the
action (1.3) of Bf on N, i.e., we put

Obj(B*) =N, Hom(B")={(n,a,n)|n e B/}

Define A : Obj(B*) — Hom(B") by A(n) = (n,Ay,,n). Then the well
known fact that B} is a Garside monoid for each n [32, 38] easily implies
that BT is a Garside category, as will be formally proved in Proposi-
tion 1.12 below.

The example of B shows the benefit of going from a monoid to a
category. The monoid BZ, is not a (left)-Garside monoid, because it is of
infinite type and there cannot exist a global Garside element A. However,
the partial action of (1.3) enables us to restrict to subsets B,/ (submonoids
in the current case) for which Garside elements exist: with the notation
of (1.1), B} is (BL)n. Thus the categorical context enables us to capture
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LEFT-GARSIDE CATEGORIES

the fact that Bl is, in some sense, locally Garside. It is easy to formalize
these ideas in a general setting.

Definition 1.11. Let M be a monoid with a partial action « on a set X.
A sequence (A;).cx of elements of M is called a left-Garside sequence
for « if, for each x in X, the element x « A, is defined and

(LGgOC) Div(A,) left-generates M, and a < A, implies A, < aAgeq.

The monoid M is said to be locally left-Garside with respect to v if it is
left-preGarside and there is at least one left-Garside sequence for a.

A typical example of a locally left-Garside monoid is B, with its ac-
tion (1.3) on N. Indeed, the sequence (A, )nen is clearly a left-Garside
sequence for (1.3).

The next result should appear quite natural.

Proposition 1.12. Assume that M is a locally left-Garside monoid with
left-Garside sequence (Ag)zex. Then C(M,X) is a left-Garside category
with left-Garside map A defined by A(x) = (z, Mg, ¢« Ay).

Proof. By definition, (z,a,y) < (2/,d’,y’) in C(M, X) implies 2/ = x and
a < ' in M. So the hypothesis that M satisfies (LGo) implies that C(M, X)
does.

Next, (z,a,vy)(y,b,2) = (z,a,y)(y,b,z") implies ab = ab’ in M, hence
b =1 by (LG1), and, therefore, C(M, X) satisfies (LGy).

Assume (z,a,y)(y,V,2") = (x,b,2)(z,d',2") in Hom(C(M, X)). Then
ab = ba’ holds in M. By (LGz), a and b admit a right-lem ¢, and we have
a<c b<c and ¢ < ab. By hypothesis, z « ab’ is defined, hence so is
x « ¢, and it is obvious to check that (z,c,z « ¢) is a right-lem of (z,a,y)
and (z,b, z) in Hom(C(M, X)). Hence C(M, X)) satisfies (LG2).

Assume that (x,a,y) is a nontrivial morphism of Hom/(C(M, X)). This
means that a is nontrivial, so, by (LGgOC), some left-divisor a’ of A, is a
left-divisor of a. Then (z,d’,x «a’) < A(x) holds, and A(x) left-generates
Hom(z, —).

Finally, assume (z, a,y) < A(x) in Hom(C(M, X)). This implies a < A,
in M. Then (LGgOC) in M implies A, < aA,. By hypothesis, y « A, is
defined, and we have (z,a,y)A(y) = (z,al,, z«al,), of which (z, A,z
Ay) is aleft-divisor in Hom(C(M, X)). So (LG3) is satisfied in C(M, X). O
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P. DEHORNOY

It is not hard to see that, conversely, if M is a left-preGarside monoid,
then C(M, X)) being a left-Garside category implies that M is a locally
left-Garside monoid. We shall not use the result here.

If M has a total action on X, i.e., if x « a is defined for all x and a,
the sets M, coincide with M, and Condition (LGY¢) reduces to (LG3). In
this case, each element A, is a left-Garside element in M, and M is a
left-Garside monoid. A similar result holds for each set M, that turns out
to be a submonoid (if any).

Proposition 1.13. Assume that M is a locally left-Garside monoid with
left-Garside sequence (Ayz)zex, and x is such that M, is closed under
product and Ay = A, holds for each y in M. Then M, is a left-Garside
submonoid of M.

Proof. By definition of a partial action, x « 1 is defined, so M, contains 1,
and it is a submonoid of M. We show that M, satisfies (LGp), (LG1), (LG2),
and (LGs). First, a counter-example to (LGg) in M, would be a counter-
example to (LGg) in M, hence M, satisfies (LGg). Similarly, an equality
ab = abl with b # b in M, would also contradict (LGy) in M, so M,
satisfies (LG1). Now, assume that a and b admit in M,, hence in M, a
common right-multiple ¢. Then a and b admit a right-lem ¢ in M. By
hypothesis, = « ¢ is defined, and ¢’ < ¢ holds. By definition of a partial
action, z « ¢ is defined as well, i.e., ¢ lies in M,, and it is a right-lcm of a
and b in M,. So M, satisfies (LG2), and it is left-preGarside.

Next, A, is a left-Garside element in M. Indeed, let a be any nontrivial
element of M,. By (LGgOC), there exists a nontrivial divisor a’ of a satisfying
a’ < A,. By definition of a partial action, x « a’ is defined, so it belongs
to M., and A, left-generates M,. Finally, assume a < A;. As A, belongs
to M, this implies a € M, hence A, < alA.q by (LGgOC), e, Ay < al\,
since we assumed that the sequence A is constant on M,. So A, is a
left-Garside element in M,,. O

2. Simple morphisms
We return to general left-Garside categories and establish a few basic

results. As in the case of Garside monoids, an important role is played by
the divisors of A, a local notion here.
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LEFT-GARSIDE CATEGORIES

2.1. Simple morphisms and the functor ¢

Hereafter, we always use A as the default notation for the (left)-Garside
map with left-Garside map A involved in the considered structure.

Definition 2.1. Assume that C is a left-Garside category. A morphism f
of C is called simple if it is a left-divisor of A(dyf). In this case, we denote
by f* the unique simple morphism satisfying f f* = A(dpf). The family
of all simple morphisms in C is denoted by Hom*(C).

By definition, every identity morphism 1, is a left-divisor of every mor-
phism with source x, hence in particular of A(zx). Therefore 1, is simple.

Definition 2.2. Assume that C is a left-Garside category. We put
¢(z) = 01(A(z)) for x in Obj(C), and ¢(f) = f** for f in Hom*P(C).

Although straightforward, the following result is fundamental—and it
is the main argument for stating (LG3) in the way we did.

Lemma 2.3. Assume that C is a left-Garside category.
(1) If f is a simple morphism, so are f* and ¢(f).
(1i) Ewvery right-divisor of a morphism A(z) is simple.

Proof. (i) By (LG3), we have ff* = A(9of) < fA(OLf), hence f* < A(d1f)
by left-cancelling f. Therefore, f* is simple. Applying the result to f*, one
shows that ¢(f)—as well as ¢*(f) for each positive k—are simple.

(77) Assume that g is a right-divisor of A(x). This means that there
exists f satisfying fg = A(z), hence g = f* by (LG1). Then g is simple
by (7). O

Lemma 2.4. Assume that C is a left-Garside category.

(1) The morphisms 1, are the only left- or right-invertible morphisms
in C.

(1) Every morphism of C is a product of simple morphisms.

(131) There is a unique way to extend ¢ into a functor of C into itself.

(tv) The map A is a natural transformation of the identity functor
into ¢, i.e., for each morphism f, we have

FAOLf) = A(of) ¢(f)- (2.1)
Proof. (i) Assume fg =1, with f # 1, and g # 1p, r. Then we have

L <f=<fg=<f=<fg=<..,
an infinite <-increasing sequence in Div(1,) that contradicts (LGo).
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(1) Let f be a morphism of C, and let x = 0y f. If f is trivial, then
it is simple, as observed above. We wish to prove that simple morphisms
generate Hom(C). Owing to Lemma 1.2, it is enough to prove that sim-
ple morphisms left-generate Hom(C), i.e., that every nontrivial morphism
with source x is left-divisible by a simple morphism with source z, in
other words by a left-divisor of A(z). This is exactly what the first part
of Condition (LG3) claims.

(7i7) Up to now, ¢ has been defined on objects, and on simple mor-
phisms. Note that, by construction, (2.1) is satisfied for each simple mor-
phism f. Indeed, applying Definition 2.1 for f and f* gives the relations

fIP=A00f) and [f*f" =A(00f") = AOf),
whence
FAQ) =177 =A0f) ™ = A0 f)o(f)-
Applying this to f = 1, gives A(z) = A(z)¢p(1s), hence ¢(1,) = Ly
by (LG1).
Let f be an arbitrary morphism of C, and let fi...f, and gi1...g4 be two

decompositions of f as a product of simple morphisms, which exist by (i7).
Repeatedly applying (2.1) to fp, ..., fi and gq, ..., g1 gives

fAOSf) = fi- fp (01f) = A(Go f)P(f1)---0(fp)
= g1---9¢AO1f) = A(Oo f)p(g1)---(9q)-

By (LG;), we deduce qb(fl)QS(fp) = ¢(g1)..-¢(gq), and therefore there is
no ambiguity in defining ¢(f) to be the common value. In this way, ¢ is
extended to all morphisms in such a way that ¢ is a functor and (2.1)
always holds. Conversely, the above definition is clearly the only one that
extends ¢ into a functor.

(tv) We have seen above that (2.1) holds for every morphism f, so
nothing new is needed here. See Figure 1 for an illustration. O

Lemma 2.5. Assume that C is a left-Garside category. Then, for each
object x and each simple morphism f, we have

P(A(z)) = A(p(x)) and  ¢(f7) = ¢(f)". (2.2)

Proof. By definition, the source of A(z) is x and its target is ¢(z), hence
applying (2.1) with f = A(x) yields A(z)A(p(z)) = A(z)d(A(x)), hence
A(p(z)) = ¢(A(x)) after left-cancelling A(x).
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T L» Y
A)| ‘f A(y)
@)y o)

FIGURE 1. Relation (2.1): the Garside map A viewed as a natural
transformation from the identity functor to the functor ¢.

On the other hand, let z = Jpf. Then we have ff* = A(x), and
do(o(f)) = ¢(x). Applying ¢ and the above relation, we find

P()o(f) = o(A(x)) = A(d(x)) = A(do(¢(f))) = o(f)o(f)"
Left-cancelling ¢(f) yields ¢(f*) = o(f)*. O

Remark 2.6. We can now see that Definition 1.5 is equivalent to Defini-
tion 2.10 of [27]: the only difference is that, in the latter, the functor ¢ is
part of the definition. Lemma 2.4(iv) shows that a left-Garside category
in our sense is a left-Garside category in the sense of [27]. Conversely, the
hypothesis that ¢ and A satisfy (2.1) implies that, for f : © — y, we have
A(z)o(y) = fA(y), whence A(z) < fA(y) and f*¢(y) = A(y), which,
by (LG1), implies ¢(f) = f**. So every left-Garside category in the sense
of [27] is a left-Garside category in the sense of Definition 1.5.

2.2. The case of a locally left-Garside monoid

We now consider the particular case of a category C(M, X) associated
with a partial action of a monoid M.

Lemma 2.7. Assume that M is a locally left-Garside monoid with left-
Garside sequence (Ag)zex. Then Ay < alyg. holds whenever x o a is
defined, and, defining ¢,(a) by Ardz(a) = alyzeq, we have

P(x) =z Ay, d((z,0,9)) = (6(2), Pz(a), d(y)). (2.3)

Proof. Assume that z «a is defined. Lemma 2.4 (77) implies that the mor-
phism (z,a,z «a) of C(M, X) can be decomposed into a finite product of
simple morphisms (zg, a1, 1), ... , (T4—1, aqg, xq). This implies a = a;...aq
in M. The hypothesis that each morphism (z;_1,a;, z;) is simple implies
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Ay, | < a;A,, for each i, whence
Ar S a1y S 010205, < .o 01090z, = D geq.

Hence, for each element a in M, there exists a unique element o’ satisfying
Ayad' = al ., and this is the element we define to be ¢,.(a). Then, zea =y
implies

(2,0,9) (Y, Ay, 9(y)) = (2, Ay, ¢(2)) (B(2), Pz (a), d(y))-
By uniqueness, we deduce ¢((z,a,y)) = (¢(z), d=(a), ¢(y)). O

2.3. Greatest common divisors

We observe, or rather recall, that left-ged’s always exist in a left-preGarside
category. We begin with a standard consequence of the noetherianity as-
sumption (LGo).

Lemma 2.8. Assume that C is a left-preGarside category and S is a subset
of Hom(C) that contains the identity-morphisms and is closed under right-
lem. Then every morphism has a unique maximal left-divisor that lies in S.

Proof. Let f be an arbitrary morphism. Starting from fo = 1,7, which
belongs to S by hypothesis, we construct a <-increasing sequence fo, fi, ...
in S N Div(f). As long as f; is not <-maximal in S N Div(f), we can
find f;1 in S satisfying f; < fi+1 < f. Condition (LGp) implies that the
construction stops after a finite number d of steps. Then f; is a maximal
left-divisor of f lying in S.

As for uniqueness, assume that ¢’ and ¢’ are maximal left-divisors of f
that lie in S. By construction, ¢’ and ¢’ admit a common right-multiple,
namely f, hence, by (LGz2), they admit a right-lem g. By construction, g is
a left-divisor of f, and it belongs to S since ¢’ and ¢’ do. The maximality
of g and ¢’ implies ¢’ = g = ¢". O

Proposition 2.9. Assume that C is a left-preGarside category. Then any
two morphisms of C sharing a common source admit a unique left-gcd.

Proof. Let § be the family of all common left-divisors of f and ¢. It
contains 15, s, and it is closed under lem. A left-ged of f and g is a maximal
left-divisor of f lying in §. Lemma 2.8 gives the result. O
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2.4. Least common multiples

As for right-lem, the axioms of left-Garside categories only demand that a
right-lem exists when a common right-multiple does. A necessary condition
for such a common right-multiple to exist is to share a common source.
This condition is also sufficient. Again we begin with an auxiliary result.

Lemma 2.10. Assume that C is a left-Garside category. Then, for f =
fi---fa with f1,..., fq simple and x = Oy f, we have

f = A@) A(d(x)) .. A(e" ! (2)). (2.4)
Proof. We use induction on d. For d = 1, this is the definition of simplicity.

Assume d > 2. Put y = 01 f1. Applying the induction hypothesis to f...f4,
we find

f=hferfa) < F1 AW) A(G(Y)) .. A" (y))
ZA( ) A(p(@)) ... A(¢7 2 () ¢ (1)
A(z) A(()) ... A" (2)) A(¢™ ().

The second equality comes from applying (2.1) d — 1 times, and the last
relation comes from the fact that ¢?~1(f;) is simple with source ¢?~1(z).
O

Proposition 2.11. Assume that C is a left-Garside category. Then any
two morphisms of C sharing a common source admit a unique right-lcm.

Proof. Let f, g be any two morphisms with source z. By Lemma 2.4, there
exists d such that f and g can be expressed as the product of at most d
simple morphisms. Then, by Lemma 2.10, A(z) A(¢(2)) ... A(¢?9 (2)) is
a common right-multiple of f and g. Finally, (LG2) implies that f and g
admit a right-lem. The uniqueness of the latter is guaranteed by Lem-
ma 2.4(i). O

In a general context of categories, right-lem’s are usually called push-
outs (whereas left-lem’s are called pull-backs). So Proposition 2.11 states
that every left-Garside category admits push-outs.

Applying the previous results to the special case of categories associated
with a partial action gives analogous results for all locally left-Garside
monoids.

Corollary 2.12. Assume that M is a locally left-Garside monoid with
respect to some partial action of M on X.
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(1) Any two elements of M admit a unique left-ged and a unique right-
lem.
(1) For each x in X, the subset M, of M is closed under right-lcm.

Proof. (i) As for left-ged’s, the result directly follows from Proposition 2.9
since, by definition, M is left-preGarside.

As for right-lem’s, assume that M is locally left-Garside with left-
Garside sequence (Az)zex. Let a,b be two elements of M. By definition
of a partial action, there exists  in X such that both z «a and x « b are
defined. By Proposition 2.11, (x,a,z+a) and (z,b, x «b) admit a right-lem
(x,¢, z) in the category C(M, X). By construction, ¢ is a common right-
multiple of @ and b in M. As M is assumed to satisfy (LG2), @ and b admit
a right-lem in M.

(74) Fix now z in X, and let a,b belong to M,, i.e., assume that x «a
and z « b are defined. Then (z,a,z « a) and (x,b,z « b) are morphisms
of C(M, X). As above, they admit a right-lem, which must be (z,¢,z « ¢)
where c is the right-lem of a and b. Hence ¢ belongs to M,. ([

3. Regular left-Garside categories

The main interest of Garside structures is the existence of a canoni-
cal normal form, the so-called greedy normal form [29]. In this section,
we adapt the construction of the normal form to the context of left-
Garside categories—this was done in [27] already—and of locally left-
Garside monoids. The point here is that studying the computation of the
normal form naturally leads to introducing the notion of a regular left-
Garside category, crucial in Section 6.

3.1. The head of a morphism

By Lemma 2.4(i7), every morphism in a left-Garside category is a prod-
uct of simple morphisms. Generally the decomposition does not need to
be unique in general, and the first step for constructing a normal form
consists in isolating a particular simple morphism that left-divides the
considered morphism. It will be useful to develop the construction in a
general framework where the distinguished morphisms do not need to be
the simple ones.
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Notation 3.1. Let us recall that, for f,g in Hom(C), where C is a left-
preGarside category, lem(f, g) is the right-lem of f and g, when it exists.
In this case, we denote by f\g the unique morphism that satisfies

f-\g =lem(f, g). (3.1)
We use a similar notation in the case of a (locally) left-Garside monoid.

Definition 3.2. Assume that C is a left-preGarside category and S is
included in Hom(C). We say that S is a seed for C if

(7) S left-generates Hom(C),
(7)) S is closed under the operations lem and \,
(#i) S is closed under left-divisor.

In other words, S is a seed for C if (i) every nontrivial morphism of C
is left-divisible by a nontrivial element of S, (i7) for all f,¢g in S, the
morphisms lem(f, g) and f\g belong to S whenever they exist, and (i)
for each f in &, the relation h < f implies h € S.

Lemma 3.3. If C is a left-Garside category, then Hom*P(C) is a seed
for C.

Proof. First, Hom®P(C) left-generates Hom(C) by Condition (LGs).

Next, assume that f, g are simple morphisms sharing the same source x.
By Proposition 2.11, the morphisms lem(f, g) and f\g exist. By definition,
we have f < A(x) and g < A(x), hence lem(f, g) < A,. Hence lem(f, g)
is simple. Let h satisfy lem(f, g)h = A(x). This is also f (f\g) h = A(x).
By Lemma 2.3(ii), (f\g)h, which is a right-divisor of A(z), is simple,
and, therefore, f\g, which is a left-divisor of (f\g) h, is simple as well by
transitivity of <.

Finally, Hom*P(C) is closed under left-divisor by definition. O

Lemma 2.8 guarantees that, if S is a seed for C, then every morphism f
of C has a unique maximal left-divisor g lying in S, and Condition (i) of
Definition 3.2 implies that ¢ is nontrivial whenever f is.

Definition 3.4. In the context above, the morphism g is called the S-head
of f, denoted Hs(f).
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In the case of Hom®P(C), it is easy to check, for each f in Hom(C), the
equality
HHomSP(C) (f) = ng(f7 A(aof)), (32)
in this case, we shall simply write H(f) for Hyomsr(c)(f)-

3.2. Normal form

The following result is an adaptation of a result that is classical in the
framework of Garside monoids.

Proposition 3.5. Assume that C is a left-preGarside category and S is
a seed for C. Then every nontrivial morphism f of C admits a unique
decomposition

f=r..fa, (3.3)
where f1,..., fq lie in S, fq is nontrivial, and f; is the S-head of f;...fq for
each 1.

Proof. Let f be a nontr