We study the free complexification operation for compact quantum groups, . We prove that, with suitable definitions, this induces a one-to-one correspondence between free orthogonal quantum groups of infinite level, and free unitary quantum groups satisfying .
On étudie l’opération de complexification libre pour les groupes quantiques compacts, . On montre qu’avec des définitions convenables, cette opération induit une bijection entre groupes quantiques orthogonaux libres de niveau infini, et groupes quantiques unitaires libres satisfaisant .
@article{AMBP_2008__15_2_135_0, author = {Teodor Banica}, title = {A {Note} on {Free} {Quantum} {Groups}}, journal = {Annales Math\'ematiques Blaise Pascal}, pages = {135--146}, publisher = {Annales math\'ematiques Blaise Pascal}, volume = {15}, number = {2}, year = {2008}, doi = {10.5802/ambp.243}, mrnumber = {2468039}, zbl = {1188.46043}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.243/} }
TY - JOUR TI - A Note on Free Quantum Groups JO - Annales Mathématiques Blaise Pascal PY - 2008 DA - 2008/// SP - 135 EP - 146 VL - 15 IS - 2 PB - Annales mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.243/ UR - https://www.ams.org/mathscinet-getitem?mr=2468039 UR - https://zbmath.org/?q=an%3A1188.46043 UR - https://doi.org/10.5802/ambp.243 DO - 10.5802/ambp.243 LA - en ID - AMBP_2008__15_2_135_0 ER -
Teodor Banica. A Note on Free Quantum Groups. Annales Mathématiques Blaise Pascal, Volume 15 (2008) no. 2, pp. 135-146. doi : 10.5802/ambp.243. https://ambp.centre-mersenne.org/articles/10.5802/ambp.243/
[1] Le groupe quantique compact libre U(n), Comm. Math. Phys., Volume 190 (1997), pp. 143-172 | Article | MR: 1484551 | Zbl: 0906.17009
[2] Representations of compact quantum groups and subfactors, J. Reine Angew. Math., Volume 509 (1999), pp. 167-198 | Article | MR: 1679171 | Zbl: 0957.46038
[3] The hyperoctahedral quantum group, J. Ramanujan Math. Soc., Volume 22 (2007), pp. 345-384 | MR: 2376808 | Zbl: pre05252140
[4] Integration over compact quantum groups, Publ. Res. Inst. Math. Sci., Volume 43 (2007), p. 377-302 | Article | MR: 2341011 | Zbl: 1129.46058
[5] Lectures on the combinatorics of free probability, Cambridge University Press, Cambridge, 2006 | MR: 2266879 | Zbl: 1133.60003
[6] Circular and semicircular systems and free product factors, Progress in Math., Volume 92 (1990), pp. 45-60 | MR: 1103585 | Zbl: 0744.46055
[7] Free products of compact quantum groups, Comm. Math. Phys., Volume 167 (1995), pp. 671-692 | Article | MR: 1316765 | Zbl: 0838.46057
[8] Quantum symmetry groups of finite spaces, Comm. Math. Phys., Volume 195 (1998), pp. 195-211 | Article | MR: 1637425 | Zbl: 1013.17008
[9] Compact matrix pseudogroups, Comm. Math. Phys., Volume 111 (1987), pp. 613-665 | Article | MR: 901157 | Zbl: 0627.58034
[10] Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math., Volume 93 (1988), pp. 35-76 | Article | MR: 943923 | Zbl: 0664.58044
Cited by Sources: