Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian
Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 147-160.

In this paper we consider the modified wave equation associated with a class of radial Laplacians L generalizing the radial part of the Laplace-Beltrami operator on hyperbolic spaces or Damek-Ricci spaces. We show that the Huygens’ principle and the equipartition of energy hold if the inverse of the Harish-Chandra c-function is a polynomial and that these two properties hold asymptotically otherwise. Similar results were established previously by Branson, Olafsson and Schlichtkrull in the case of noncompact symmetric spaces.

DOI : 10.5802/ambp.199

Jamel El Kamel 1 ; Chokri Yacoub 1

1 Faculty of Science of Monastir Department of Mathematics Boulevard de l’environnement Monastir Tunisia
@article{AMBP_2005__12_1_147_0,
     author = {Jamel El Kamel and Chokri Yacoub},
     title = {Huygens{\textquoteright} principle and equipartition of energy for the modified wave equation associated to a generalized radial {Laplacian}},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {147--160},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {12},
     number = {1},
     year = {2005},
     doi = {10.5802/ambp.199},
     mrnumber = {2126445},
     zbl = {1088.35036},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/}
}
TY  - JOUR
AU  - Jamel El Kamel
AU  - Chokri Yacoub
TI  - Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian
JO  - Annales mathématiques Blaise Pascal
PY  - 2005
SP  - 147
EP  - 160
VL  - 12
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/
DO  - 10.5802/ambp.199
LA  - en
ID  - AMBP_2005__12_1_147_0
ER  - 
%0 Journal Article
%A Jamel El Kamel
%A Chokri Yacoub
%T Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian
%J Annales mathématiques Blaise Pascal
%D 2005
%P 147-160
%V 12
%N 1
%I Annales mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/
%R 10.5802/ambp.199
%G en
%F AMBP_2005__12_1_147_0
Jamel El Kamel; Chokri Yacoub. Huygens’ principle and equipartition of energy for the modified wave equation associated to a generalized radial Laplacian. Annales mathématiques Blaise Pascal, Tome 12 (2005) no. 1, pp. 147-160. doi : 10.5802/ambp.199. https://ambp.centre-mersenne.org/articles/10.5802/ambp.199/

[1] J.Ph. Anker; E. Damek; Ch. Yacoub Spherical analysis on harmonic AN groups, Ann. Scuola Norm. Sup. Pisa, Volume XXIII (1996), pp. 643-679 | Numdam | MR | Zbl

[2] W.R. Bloom; Z. Xu Fourier transforms of Schwartz functions on Chébli-Triméche hypergroups, Mh. Math., Volume 125 (1998), pp. 89-109 | DOI | MR | Zbl

[3] T.P. Branson; G. Olafsson; H. Schlichtkrull Huygens’ principle in Riemannian symmetric spaces, Math. Ann., Volume 301 (1995), pp. 445-462 | DOI | Zbl

[4] T.P. Branson; G. Olafsson Equipartition of energy for waves in symmetric spaces, J. Funct. Anal., Volume 97 (1991), pp. 403-416 | DOI | MR | Zbl

[5] T.P. Branson Eventual partition of conserved quantities in wave motion, J. Math. Anal. Appl., Volume 96 (1983), pp. 54-62 | DOI | MR | Zbl

[6] H. Chébli Théorème de Paley-Wiener associé à un opérateur singulier sur (0,), J. Math. Pures Appl., Volume 58 (1979), pp. 1-19 | MR | Zbl

[7] R.J. Duffin Equipartition of energy in wave motion, J. Math. Anal. Appl., Volume 32 (1970), pp. 386-391 | DOI | MR | Zbl

[8] S. Helgason Huygens’ principle for wave equation on symmetric spaces, J. Funct. Anal., Volume 107 (1992), pp. 279-288 | DOI | Zbl

[9] T.H. Koornwinder; R.A. Askey & al. Jacobi functions and analysis on noncompact semisimple Lie groups, Special functions : Group theoretical aspects and applications, Reidel, 1984, pp. 1-85 | MR | Zbl

[10] P.D. Lax; R.S. Phillips Scattering theory, Academic Press, New York, 1967 | MR | Zbl

[11] P.D. Lax; R.S. Phillips Translation representations for the solution of the non-euclidean wave equation, Comm. Pure Appl. Math., Volume 32 (1979), pp. 617-667 | DOI | MR | Zbl

[12] G. Olafsson; H. Schlichtkrull Wave propagation on Riemannian symmetric spaces, J. Funct. Anal., Volume 107 (1992), pp. 270-278 | DOI | MR | Zbl

[13] K. Trimèche Transformation intégrale de Weyl et thóréme de Paley-Wiener associés à un opérateur différentiel singulier sur (0,+), J. Math. Pures. Appl., Volume 60 (1981), pp. 51-98 | MR | Zbl

[14] K. Trimèche Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comp. Harm. Anal., Volume 4 (1997), pp. 97-112 | DOI | MR | Zbl

[15] Ch. Yacoub, 1994 (Thèse, Université Paris-Sud)

Cité par Sources :