Weak convergence to fractional Brownian motion in some anisotropic Besov space
Annales Mathématiques Blaise Pascal, Volume 11 (2004) no. 1, pp. 1-17.

We give some limit theorems for the occupation times of 1-dimensional Brownian motion in some anisotropic Besov space. Our results generalize those obtained by Csaki et al. [4] in continuous functions space.

@article{AMBP_2004__11_1_1_0,
     author = {M. Ait Ouahra},
     title = {Weak convergence to fractional {Brownian} motion in some anisotropic {Besov} space},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {1--17},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {11},
     number = {1},
     year = {2004},
     doi = {10.5802/ambp.181},
     mrnumber = {2077234},
     zbl = {1077.60025},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.181/}
}
TY  - JOUR
TI  - Weak convergence to fractional Brownian motion in some anisotropic Besov space
JO  - Annales Mathématiques Blaise Pascal
PY  - 2004
DA  - 2004///
SP  - 1
EP  - 17
VL  - 11
IS  - 1
PB  - Annales mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.181/
UR  - https://www.ams.org/mathscinet-getitem?mr=2077234
UR  - https://zbmath.org/?q=an%3A1077.60025
UR  - https://doi.org/10.5802/ambp.181
DO  - 10.5802/ambp.181
LA  - en
ID  - AMBP_2004__11_1_1_0
ER  - 
%0 Journal Article
%T Weak convergence to fractional Brownian motion in some anisotropic Besov space
%J Annales Mathématiques Blaise Pascal
%D 2004
%P 1-17
%V 11
%N 1
%I Annales mathématiques Blaise Pascal
%U https://doi.org/10.5802/ambp.181
%R 10.5802/ambp.181
%G en
%F AMBP_2004__11_1_1_0
M. Ait Ouahra. Weak convergence to fractional Brownian motion in some anisotropic Besov space. Annales Mathématiques Blaise Pascal, Volume 11 (2004) no. 1, pp. 1-17. doi : 10.5802/ambp.181. https://ambp.centre-mersenne.org/articles/10.5802/ambp.181/

[1] J. Bergh; J. Löfström Interpolation spaces. An introduction, Springer-Verlag, 1976 | MR: 482275 | Zbl: 0344.46071

[2] P. Billingsley Convergence of Probability measures, Wiley, New York, 1968 | MR: 233396 | Zbl: 0172.21201

[3] Z. Ciesielski; G. Keryacharian; B. Roynette Quelques espaces fonctionels associes à des processus Gaussiens, Studia Math, Volume 107 (1993) no. 2, pp. 171-204 | MR: 1244574 | Zbl: 0809.60004

[4] E. Csaki; Z. Shi; M. Yor Fractional Brownian motions as ”higher-order” fractional derivatives of Brownian local times (Bolyai Society Mathematical Studies, to appear) | MR: 1979974 | Zbl: 1030.60073

[5] J. Jacod; A. N. Shiryaev Limit theorems for stochastic processes, Grundlehren der Mathematischen Wissenchaften, Volume 288, Springer, Berlin, 1987 | MR: 959133 | Zbl: 0635.60021

[6] A. Kamont Isomorphism of some anisotropic Besov and sequence spaces, Studia. Math, Volume 110 (1994) no. 2, pp. 169-189 | MR: 1279990 | Zbl: 0810.41010

[7] A. Kamont On the fractional anisotropic Wiener field, Prob. and Math. Statistics, Volume 16 (1996) no. 1, pp. 85-98 | MR: 1407935 | Zbl: 0857.60046

[8] A. A. Kilbas; O. I. Marichev; S. G. Samko Fractional integrals and derivatives. Theory and applications, Gordon and Breach Science Publishers, 1993 | MR: 1347689 | Zbl: 0818.26003

[9] J. Lamperti On convergence of stochastic processes, Trans. Amer. Math. Soc, Volume 104 (1962), pp. 430-435 | Article | MR: 143245 | Zbl: 0113.33502

[10] M. B. Marcus; J. Rosen p–variation of the local times of symmetric stable processes and of Gaussian processes with stationary increments, Ann. Prob, Volume 20 (1992) no. 4, pp. 1685-1713 | Article | MR: 1188038 | Zbl: 0762.60069

[11] H. P. McKean A Hölder condition for Brownian local time, J. Math. Kyoto Univ, Volume 1 (1962), pp. 195-201 | MR: 146902 | Zbl: 0121.13101

[12] J. Peetre New thoughts on Besov spaces, Duke Univ. Math. Series, Durham, NC, 1976 | MR: 461123 | Zbl: 0356.46038

[13] E. C. Titchmarsh Introduction to the theory of Fourier integrals, Second edition. Clarendon Press, Oxford, 1948

[14] H. R. Trotter A property of Brownian motion paths, Illinois. J. Math, Volume 2 (1958), pp. 425-433 | MR: 96311 | Zbl: 0117.35502

[15] T. Yamada On the fractional derivative of Brownian local times, J. Math. Kyoto Univ, Volume 25 (1985) no. 1, pp. 49-58 | MR: 777245 | Zbl: 0625.60090

Cited by Sources: