Quantum isometry group of dual of finitely generated discrete groups - II
Annales Mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 219-247.

As a continuation of the programme of [13], we carry out explicit computations of (Γ,S), the quantum isometry group of the canonical spectral triple on C r * (Γ) coming from the word length function corresponding to a finite generating set S, for several interesting examples of Γ not covered by the previous work [13]. These include the braid group of 3 generators, 4 *n etc. Moreover, we give an alternative description of the quantum groups H s + (n,0) and K n + (studied in [3], [4]) in terms of free wreath product. In the last section we give several new examples of groups for which (Γ) turns out to be a doubling of C * (Γ).

DOI : https://doi.org/10.5802/ambp.361
Classification : 58B34,  46L87,  46L89
Mots clés: Compact quantum group, Quantum isometry group, Spectral triple
@article{AMBP_2016__23_2_219_0,
     author = {Arnab Mandal},
     title = {Quantum isometry group of dual of finitely generated discrete groups - II},
     journal = {Annales Math\'ematiques Blaise Pascal},
     pages = {219--247},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {23},
     number = {2},
     year = {2016},
     doi = {10.5802/ambp.361},
     language = {en},
     url = {ambp.centre-mersenne.org/item/AMBP_2016__23_2_219_0/}
}
Arnab Mandal. Quantum isometry group of dual of finitely generated discrete groups - II. Annales Mathématiques Blaise Pascal, Tome 23 (2016) no. 2, pp. 219-247. doi : 10.5802/ambp.361. https://ambp.centre-mersenne.org/item/AMBP_2016__23_2_219_0/

[1] Teodor Banica Quantum automorphism groups of small metric spaces, Pacific J. Math., Volume 219 (2005) no. 1, pp. 27-51 | Article

[2] Teodor Banica; Adam Skalski Two parameter families of quantum symmetry groups, J. Funct. Anal., Volume 260 (2011) no. 11, pp. 3252-3282 | Article

[3] Teodor Banica; Adam Skalski Quantum isometry groups of duals of free powers of cyclic groups, Int. Math. Res. Not., Volume 2012 (2012) no. 9, pp. 2094-2122

[4] Teodor Banica; Adam Skalski Quantum symmetry groups of C * -algebras equipped with orthogonal filtrations, Proc. Lond. Math. Soc. (3), Volume 106 (2013) no. 5, pp. 980-1004 | Article

[5] Teodor Banica; Roland Vergnioux Fusion rules for quantum reflection groups, J. Noncommut. Geom., Volume 3 (2009) no. 3, pp. 327-359 | Article

[6] Jyotishman Bhowmick; Debashish Goswami Quantum group of orientation preserving Riemannian isometries, J. Funct. Anal., Volume 257 (2009) no. 8, pp. 2530-2572 | Article

[7] Jyotishman Bhowmick; Adam Skalski Quantum isometry groups of noncommutative manifolds associated to group C * - algebras, J. Geom. Phys., Volume 60 (2010) no. 10, pp. 1474-1489 | Article

[8] Julien Bichon Quantum automorphism groups of finite graphs, Proc. Am. Math. Soc., Volume 131 (2003) no. 3, pp. 665-673 | Article

[9] Julien Bichon Free wreath product by the quantum permutation group, Algebr. Represent. Theory, Volume 7 (2004) no. 4, pp. 343-362 | Article

[10] Alain Connes Noncommutative Geometry, Academic Press, 1994, xiii+661 pages

[11] Debashish Goswami Quantum group of isometries in classical and noncommutative geometry, Commun. Math. Phys., Volume 285 (2009) no. 1, pp. 141-160 | Article

[12] Debashish Goswami Existence and examples of quantum isometry groups for a class of compact metric spaces, Adv. Math., Volume 280 (2015), pp. 340-359 | Article

[13] Debashish Goswami; Arnab Mandal Quantum isometry group of dual of finitely generated discrete groups and quantum groups (2015) (https://arxiv.org/abs/1408.5683)

[14] Jan Liszka-Dalecki; Piotr M. Sołtan Quantum isometry groups of symmetric groups, Int. J. Math., Volume 23 (2012) no. 7, p. 1250074-1-1250074-25 | Article

[15] Ann Maes; Alfons Van Daele Notes on compact quantum groups, Nieuw. Arch. Wisk., Volume 16 (1998) no. 1-2, pp. 73-112

[16] Richard K. Molnar Semi-direct products of Hopf algebras, J. Algebra, Volume 47 (1977), pp. 29-51 | Article

[17] Adam Skalski; Piotr M. Sołtan Projective limits of quantum symmetry groups and the doubling construction of Hopf algebras, Infin. Dimens. Anal.Quantum probab. Relat. Top., Volume 17 (2014) no. 2, p. 1450012-1-1450012-27 | Article

[18] Jicheng Tao; Daowen Qiu Quantum isometry groups for Dihedral group D 2(2n+1) , J. Geom. Phys., Volume 62 (2012) no. 9, pp. 1977-1983 | Article

[19] Shuzhou Wang Free products of compact quantum groups, Commun. Math. Phys., Volume 167 (1995) no. 3, pp. 671-692 | Article

[20] Shuzhou Wang Quantum symmetry groups of finite spaces, Commun. Math. Phys., Volume 195 (1998) no. 1, pp. 195-211 | Article

[21] Stanisław Lech Woronowicz Compact matrix pseudogroups, Commun. Math. Phys., Volume 111 (1987), pp. 613-665 | Article