@article{AMBP_2002__9_2_229_0,
author = {Thierry Colin},
title = {Mod\`eles stratifi\'es en m\'ecanique des fluides g\'eophysiques},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {229--243},
year = {2002},
publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
volume = {9},
number = {2},
zbl = {02081312},
mrnumber = {1969080},
language = {fr},
url = {https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_229_0/}
}
TY - JOUR AU - Thierry Colin TI - Modèles stratifiés en mécanique des fluides géophysiques JO - Annales mathématiques Blaise Pascal PY - 2002 SP - 229 EP - 243 VL - 9 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_229_0/ LA - fr ID - AMBP_2002__9_2_229_0 ER -
%0 Journal Article %A Thierry Colin %T Modèles stratifiés en mécanique des fluides géophysiques %J Annales mathématiques Blaise Pascal %D 2002 %P 229-243 %V 9 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_229_0/ %G fr %F AMBP_2002__9_2_229_0
Thierry Colin. Modèles stratifiés en mécanique des fluides géophysiques. Annales mathématiques Blaise Pascal, Tome 9 (2002) no. 2, pp. 229-243. https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_229_0/
[1] , , et . Regularity and integrability of 3d euler and navier-stokes equations for rotating fluids. Asymptot. Anal., 15, no. 2: 103-150, 1997. | Zbl | MR
[2] , , et . Existence of solutions to the stommel-charney model of the gulf stream. SIAM J. Math. Anal., 19, (6): , 1988. | Zbl | MR
[3] et . Validity of the quasigeostrophic model for large scale flow in the atmosphere and ocean. Jour. Math. Anal., 25, (4): 1023-1068, 1994. | Zbl | MR
[4] et . Some remarks on the derivation of the sverdrup relation. J. Math. Fluid Mech., 4 (2): 95-108, 2002. | Zbl | MR
[5] , , et . A corrector for the sverdrup solution for a domain with islands, to appear in. Applicable Anal., 2002. | Zbl | MR
[6] , , et . Nonstationary models for shallow lakes. Asymptot. Anal., 22 (1): 15-38, 2000. | Zbl | MR
[7] . A propos d'un problème de pénalisation de type antisymétrique. J. Math. Pures Appl, 9 (76): 739-755, 1997. | Zbl | MR
[8] . Remarks on a homogeneous model of ocean circulation. Asymptotic Anal., 12 (2): 153-168, 1996. | Zbl | MR
[9] . The cauchy problem and the continuous limit for the multilayer model in geophysical fluid dynamics. SIAM J. Math. Anal., 28 (3): 516-529, 1997. | Zbl | MR
[10] et . Rotating fluid at high rossby number driven by a surface stress: existence and convergence. Adv. Differential Equations, 2 (5): 715-751, 1997. | Zbl | MR
[11] et . On the homogeneous model of wind-driven ocean circulation. SIAM J. Appl. Math., 60: 43-60, 2000. | Zbl | MR
[12] . The tridimensional navier-stokes equations with almost bidimensional data: stability, uniqueness, and life span. Internat. Math. Res. Notices, 18: 919-935, 1997. | Zbl | MR
[13] et . Ekman layers of rotating fluids, the case of well prepared initial data. Comm. Partial Differential Equations, 22, (5-6): 953-975, 1997. | Zbl | MR
[14] , , et . Models of the coupled atmosphere and ocean (cao i). Computational Mechanics Advances, 1: 5-54, 1993. | Zbl | MR
[15] , , et . Numerical analysis of the coupled atmosphere-ocean models (cao ii). Computational Mechanics Advances, 1: 55-119, 1993. | Zbl | MR
[16] , , et . Geostrophic asymptotics of the primitive equations of the atmosphere. Topol. Methods Nonlinear Anal., 4, (2): 253-287, 1994. | Zbl | MR
[17] , , et . Mathematical theory for the coupled atmosphere-ocean models (cao iii). J. Math. Pures Appl., 9 (74): 105-163, 1995. | Zbl | MR
[18] . Geophysical fluid dynamics. Springer Verlag, second edition, 1987. | Zbl
[19] et . Solitary waves in a two-layer quasigeostrophic model with wind stress forcing. Geophys. Astrophys. Fluid Dynam, 91, (3-4): 169-197, 1999. | MR
[20] et . Navier-stokes equations in three-dimensional thin domains with various boundary conditions. Adv. Differential Equations, 1, (4) : 499-546, 1996. | Zbl | MR
