@article{AMBP_2002__9_2_181_0, author = {Didier Bresch and Thierry Huck and Mamadou Sy}, title = {Circulation thermohaline et \'equations plan\'etaires g\'eostrophiques : propri\'et\'es physiques, num\'eriques et math\'ematiques}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {181--212}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {9}, number = {2}, year = {2002}, zbl = {02081310}, mrnumber = {1969078}, language = {fr}, url = {https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_181_0/} }
TY - JOUR AU - Didier Bresch AU - Thierry Huck AU - Mamadou Sy TI - Circulation thermohaline et équations planétaires géostrophiques : propriétés physiques, numériques et mathématiques JO - Annales mathématiques Blaise Pascal PY - 2002 SP - 181 EP - 212 VL - 9 IS - 2 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_181_0/ LA - fr ID - AMBP_2002__9_2_181_0 ER -
%0 Journal Article %A Didier Bresch %A Thierry Huck %A Mamadou Sy %T Circulation thermohaline et équations planétaires géostrophiques : propriétés physiques, numériques et mathématiques %J Annales mathématiques Blaise Pascal %D 2002 %P 181-212 %V 9 %N 2 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_181_0/ %G fr %F AMBP_2002__9_2_181_0
Didier Bresch; Thierry Huck; Mamadou Sy. Circulation thermohaline et équations planétaires géostrophiques : propriétés physiques, numériques et mathématiques. Annales mathématiques Blaise Pascal, Tome 9 (2002) no. 2, pp. 181-212. https://ambp.centre-mersenne.org/item/AMBP_2002__9_2_181_0/
[1] Computational design for long-term numerical integration of the equations of fluid motions: two dimensional incompressible flow. part 1. J. Comput. Phys., 1: 119-143, 1966. | MR | Zbl
.[2] Théorie analytique de la chaleur, Vol. 2. Gauthier-Villars, Paris, 1903.
.[3] Convection in rotating porous media: The planetary geostrophic equations, used in geophysical fluid dynamics, revisited. Cont. Mech. Thermodyn., To appear 2003. | MR | Zbl
et .[4] Scale considerations of planetary motions of the atmosphere. Tellus, 10: 195-205, 1958.
.[5] Global well posedness and finite dimensional global attractor for a 3-d planetary geostrophic viscous model. Comm. Pure Appl. Math., page , To appear 2003. | MR | Zbl
et .[6] Rotating fluid at high rossby number driven by a surface stress: existence and convergence. Adv. Differential Equations, 2: 715-751, 1997. | MR | Zbl
et .[7] Buoyancy driven planetary flows. J. Mar. Res., 46: 215-265, 1988.
.[8] On the interaction of wind and buoyancy driven gyres. J. Mar. Res., 47: 595-633, 1989.
.[9]
. On the oceanic thermohaline circulation. in modelling oceanic climate interactions. J. Willebrand and D. L. T. AndersonEds, Springer-Verlag: 151-183, 1993.[10] Baroclinic instability: an oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr., 29: 893-910, 1999. | MR
et .[11] A fully implicit model of the three-dimensional thermohaline ocean circulation. J. Comput. Phys., 173: 1-31, 2001. | Zbl
, , , et .[12] Multiple thermohaline states due to variable diffusivity in a hierarchy of simple models. Ocean Modelling, 3: 67-94, 2001.
et .[13] Solutions fortes et comportement asymptotique pour un modèle de convection naturelle en milieux poreux. Acta Applicandae Mathematicae, 7: 45-77, 1986. | MR | Zbl
.[14] Generalized stability theory. part i: Autonomous operators. J. Atmos. Sci., 53: 2025-2040, 1996. | MR
et .[15] Generalized stability theory. part ii: Nonautonomous operators. J. Atmos. Sci., 53: 2041-2053, 1996. | MR
et .[16] Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr., 20: 150-155, 1990.
et .[17] Developments in ocean climate modelling. Ocean Modelling, 2: 123-192, 2000.
et al.[18] Buoyancy-driven circulation in an ocean-basin with isopycnals intersecting the sloping boundary. J. Phys. Oceanogr., 26: 913-940, 1996.
et .[19] Surface thermal boundary condition for ocean circulation models. J. Phys. Oceanogr., 1: 241-248, 1971.
.[20] Modélisation de la circulation thermohaline : Analyse de sa variabilité interdécennale. Thèse de doctorat, Université de Bretagne Occidentale, Brest, France, 1997.
.[21] On the robustness of the interdecadal modes of the thermohaline circulation. J. Climate, 14: 940-963, 2001.
, , et .[22] Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to interdecadal oscillations. Tellus, 53A: 526-545, 2001.
et .[23] On the influence of the parameterization of lateral boundary layers on the thermohaline circulation in coarse-resolution ocean models. J. Mar. Res., 57: 387-426, 1999.
, , et .[24] A two-level wind and buoyancy driven thermocline model. J. Phys. Oceanogr., 15: 1414-1432, 1985. | MR
.[25] OPA 8.1 ocean general circulation model reference manual. Note du Pôle de modélisation, Institut Pierre-Simon Laplace, 11:1-91, 1998.
, , , et .[26] Instabilities and multiple equilibria of the thermohaline circulation. Ph.D. thesis dissertation, Institut fur Meereskunde, Kiel, 126pp, 1990.
.[27] Multiple equilibria of the global thermohaline circulation. J. Phys. Oceanogr., 21: 1372-1385, 1991.
et .[28] The role of air-sea interaction in controlling the optimal perturbations of low-frequency tropical coupled ocean-atmosphere modes. ECMWF Technical memorandum, Reading, UK, 351: 35pp, 2001.
, , , , , et .[29] The GFDL Modular Ocean Model. Users Guide Version 1.0., GFDL Ocean Group Technical Report #2, 1991.
, , et .[30] Comparison of thermally driven circulations from a depth-coordinate model and an isopycnal-layer model. part ii: The difference and structure of the circulations. J. Phys. Oceanogr., 31: 2612-2624, 2001.
et .[31] Geostrophic motion. Rev. Geophys. Space Phys., 1: 123-176, 1963.
.[32] Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr., 12: 1154-1158, 1982.
.[33] The oceanic thermocline and the associated thermohaline circulation. Tellus, XI: 295-308, 1959. | MR
et .[34] A simplified linear ocean circulation theory. J. Mar. Res., 44:695-711, 1986.
.[35] Linear ocean circulation theory with realistic bathymetry. J. Mar. Res., 56: 833-884, 1998.
.[36] Some mathematical properties of the planetary geostrophic equations for large scale ocean circulation. Appl. Anal., 70: 147-173, 1998. | MR | Zbl
, , et .[37] Remarks on the planetary geostrophic model of gyre scale ocean circulation. Diff. Int. Eqs., 13: 1-14, 2000. | MR | Zbl
, , et .[38] Large-scale circulation with small diapycnal diffusion: The two-thermocline limit. J. Mar. Res., 55: 223-275, 1997.
et .[39] A simple friction and diffusion scheme for planetary geostrophic basin models. J. Phys. Oceanogr., 27: 186-194, 1997.
et .[40] The stability of a zonally averaged thermohaline circulation model. Tellus, 48: 158-178, 1996.
et .[41] Thermohaline convection with two stable regimes of flow. Tellus, XIII: 224-230, 1961.
.[42] On the abyssal circulation of the world ocean. i: Stationary planetary flow patterns on a sphere. Deep Sea Res., 6: 140-154, 1960.
et .[43] On the abyssal circulation of the world ocean. ii: An idealized model of the circulation pattern and amplitude in oceanic basins. Deep Sea Res., 6: 217-233, 1960.
et .[44] Instability of the thermohaline ocean circulation on interdecadal time scales. J. Phys. Oceanogr., 32: 138-160, 2002.
et .[45] Coriolis effect on gravity-driven convection in a rotating porous layer heated from below. J. Fluid Mech, 1376: 351-375, 1998. | MR | Zbl
.[46] An advective model of the ocean thermocline. Tellus, XI: 309-318, 1959.
.[47] Numerical investigations of steady and oscillating thermohaline circulation. Ph.D. thesis, University of Washington, 1993.
.[48] Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr., 23: 1389-1410, 1993.
et .[49] A thermocline model for ocean-climate studies. J. Mar. Res., 50: 99-124, 1992.
, , et .[50] Regularity results for the stationary primitive equations of the atmosphere and the ocean. Nonlinear Anal, 28: 289-313, 1997. | MR | Zbl
.