The measure-theoretical approach to p-adic probability theory
Annales mathématiques Blaise Pascal, Tome 6 (1999) no. 1, pp. 21-32.
@article{AMBP_1999__6_1_21_0,
     author = {Andrei Khrennikov and Shinichi Yamada and Arnoud van Rooij},
     title = {The measure-theoretical approach to $p$-adic probability theory},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {21--32},
     publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
     volume = {6},
     number = {1},
     year = {1999},
     zbl = {0941.60010},
     mrnumber = {1693138},
     language = {en},
     url = {https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/}
}
TY  - JOUR
AU  - Andrei Khrennikov
AU  - Shinichi Yamada
AU  - Arnoud van Rooij
TI  - The measure-theoretical approach to $p$-adic probability theory
JO  - Annales mathématiques Blaise Pascal
PY  - 1999
SP  - 21
EP  - 32
VL  - 6
IS  - 1
PB  - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
UR  - https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/
LA  - en
ID  - AMBP_1999__6_1_21_0
ER  - 
%0 Journal Article
%A Andrei Khrennikov
%A Shinichi Yamada
%A Arnoud van Rooij
%T The measure-theoretical approach to $p$-adic probability theory
%J Annales mathématiques Blaise Pascal
%D 1999
%P 21-32
%V 6
%N 1
%I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal
%U https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/
%G en
%F AMBP_1999__6_1_21_0
Andrei Khrennikov; Shinichi Yamada; Arnoud van Rooij. The measure-theoretical approach to $p$-adic probability theory. Annales mathématiques Blaise Pascal, Tome 6 (1999) no. 1, pp. 21-32. https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/

1. Albeverio, S., Khrennikov, A.Yu. - Representation of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions. J. of Phys. A, 29, 5515-5527 (1996). | MR | Zbl

2. Albeverio, S., Khrennikov, A. Yu . - p-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom. Int. J. of Modern Phys., 10, No.13/14, 1665-1673 (1996). | MR

3. Albeverio, S., Karwowski, W., A random walk on p-adics - the generator and its spectrum. Stochastic Process Appl., 53, 1 - 22 (1994). | MR | Zbl

4. Albeverio, S., Cianci, R., De Grande - De Kimpe, N., Khrennikov., A., p-adic theory of probability and foundations of quantum mechanics. Accepted for the publication in Russian J. of Math. Phys.

5. Cramer, H. - Mathematical theory of statistics. Univ. Press, Princeton (1949).

6. Frampton, P. H. and Okada, Y. - p-adic string N-point function. Phys. Rev. Lett. B , 60, 484-486 (1988). | MR

7. Frechet, M. - Recherches théoriques modernes sur la théorie des probabilités, Univ. Press., Paris (1937-1938). | JFM | Zbl

8. Khrennikov, A.Yu. - p-adic valued distributions in mathematical physics. Kluwer Academic Publishers, Dordrecht (1994). | MR | Zbl

9. Khrennikov, A.Yu. - p-adic probability interpretation of Bell's inequality paradoxes. Physics Letters A, 200, 119-223 (1995). | MR | Zbl

10. Khrennikov, A.Yu. - p-adic probability distribution of hidden variables. Physica A, 215, 577-587 (1995).

11. Khrennikov, A.Yu. - p-adic theory of probability and its applications. A principle of the statistical stabilization of frequencies. Teor. and Matem. Fiz., 97, No. 3, 348-363 (1993). | MR | Zbl

12. Khrennikov, A.Yu. - Mathematical methods of the non-Archimedean physics. Uspekhi Mat. Nauk, 45, No. 4, 79-110 (1990). | MR | Zbl

13. Khrennikov, A.Yu. - Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer Academic Publishers, Dordrecht (1997). | MR | Zbl

14. Kolmogorov, A.N. - Foundations of the Probability Theory. Chelsea Publ. Comp., New York (1956). | MR | Zbl

15. Mises, R.Von , - The mathematical theory of probability and statistics. Academic, London(1964). | Zbl

16. Mises, R.Von - Probability, Statistics and Truth. Macmillan, London (1957). | MR

17. Monna, A. and Springer, T. - Integration non-Archimedienne, 1,2. Indag. Math., 25, 634-653(1963). | MR | Zbl

18. Schikhov, W. - Ultrametric calculus. Cambridge Univ. Press, Cambridge (1984) | Zbl

19. Van Rooij, A. - Non-archimedean functional analysis. Marcel Dekker, Inc., New York (1978). | MR | Zbl

20. Volovich, I.V. - p-adic string. Class. Quant. Grav. 4, 83-87 (1987). | MR

21. Vladimirov, V.S. and Volovich, I.V. - p-adic quantum mechanics. Commun. Math. Phys., 123, 659-676 (1989). | MR | Zbl

22. Vladimirov, V.S., Volovich, I.V., and Zelenov, E.I. - p-adic analysis and Mathematical Physics. World Scientific Publ., Singapure (1994). | MR | Zbl