@article{AMBP_1999__6_1_21_0, author = {Andrei Khrennikov and Shinichi Yamada and Arnoud van Rooij}, title = {The measure-theoretical approach to $p$-adic probability theory}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {21--32}, publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal}, volume = {6}, number = {1}, year = {1999}, zbl = {0941.60010}, mrnumber = {1693138}, language = {en}, url = {https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/} }
TY - JOUR AU - Andrei Khrennikov AU - Shinichi Yamada AU - Arnoud van Rooij TI - The measure-theoretical approach to $p$-adic probability theory JO - Annales mathématiques Blaise Pascal PY - 1999 SP - 21 EP - 32 VL - 6 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/ LA - en ID - AMBP_1999__6_1_21_0 ER -
%0 Journal Article %A Andrei Khrennikov %A Shinichi Yamada %A Arnoud van Rooij %T The measure-theoretical approach to $p$-adic probability theory %J Annales mathématiques Blaise Pascal %D 1999 %P 21-32 %V 6 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/ %G en %F AMBP_1999__6_1_21_0
Andrei Khrennikov; Shinichi Yamada; Arnoud van Rooij. The measure-theoretical approach to $p$-adic probability theory. Annales mathématiques Blaise Pascal, Tome 6 (1999) no. 1, pp. 21-32. https://ambp.centre-mersenne.org/item/AMBP_1999__6_1_21_0/
1. Representation of the Weyl group in spaces of square integrable functions with respect to p-adic valued Gaussian distributions. J. of Phys. A, 29, 5515-5527 (1996). | MR | Zbl
, -2. p-adic Hilbert space representation of quantum systems with an infinite number of degrees of freedom. Int. J. of Modern Phys., 10, No.13/14, 1665-1673 (1996). | MR
, . -3. A random walk on p-adics - the generator and its spectrum. Stochastic Process Appl., 53, 1 - 22 (1994). | MR | Zbl
, ,4. p-adic theory of probability and foundations of quantum mechanics. Accepted for the publication in Russian J. of Math. Phys.
, , , ,5. Mathematical theory of statistics. Univ. Press, Princeton (1949).
-6. p-adic string N-point function. Phys. Rev. Lett. B , 60, 484-486 (1988). | MR
and -7. Recherches théoriques modernes sur la théorie des probabilités, Univ. Press., Paris (1937-1938). | JFM | Zbl
-8. p-adic valued distributions in mathematical physics. Kluwer Academic Publishers, Dordrecht (1994). | MR | Zbl
-9. p-adic probability interpretation of Bell's inequality paradoxes. Physics Letters A, 200, 119-223 (1995). | MR | Zbl
-10. p-adic probability distribution of hidden variables. Physica A, 215, 577-587 (1995).
-11. p-adic theory of probability and its applications. A principle of the statistical stabilization of frequencies. Teor. and Matem. Fiz., 97, No. 3, 348-363 (1993). | MR | Zbl
-12. Mathematical methods of the non-Archimedean physics. Uspekhi Mat. Nauk, 45, No. 4, 79-110 (1990). | MR | Zbl
-13. Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer Academic Publishers, Dordrecht (1997). | MR | Zbl
-14. Foundations of the Probability Theory. Chelsea Publ. Comp., New York (1956). | MR | Zbl
-15. The mathematical theory of probability and statistics. Academic, London(1964). | Zbl
, -16. Probability, Statistics and Truth. Macmillan, London (1957). | MR
-17. Integration non-Archimedienne, 1,2. Indag. Math., 25, 634-653(1963). | MR | Zbl
and -18. Ultrametric calculus. Cambridge Univ. Press, Cambridge (1984) | Zbl
-19. Non-archimedean functional analysis. Marcel Dekker, Inc., New York (1978). | MR | Zbl
-20. p-adic string. Class. Quant. Grav. 4, 83-87 (1987). | MR
-21. p-adic quantum mechanics. Commun. Math. Phys., 123, 659-676 (1989). | MR | Zbl
and -22. p-adic analysis and Mathematical Physics. World Scientific Publ., Singapure (1994). | MR | Zbl
, , and -