@article{AMBP_1994__1_1_21_0,
author = {S.D. Bajpai},
title = {Generating function and orthogonality property of a class of polynomials occurring in quantum mechanics},
journal = {Annales math\'ematiques Blaise Pascal},
pages = {21--26},
publisher = {Laboratoires de Math\'ematiques Pures et Appliqu\'ees de l'Universit\'e Blaise Pascal},
volume = {1},
number = {1},
year = {1994},
zbl = {0828.33007},
mrnumber = {1275214},
language = {en},
url = {https://ambp.centre-mersenne.org/item/AMBP_1994__1_1_21_0/}
}
TY - JOUR AU - S.D. Bajpai TI - Generating function and orthogonality property of a class of polynomials occurring in quantum mechanics JO - Annales mathématiques Blaise Pascal PY - 1994 SP - 21 EP - 26 VL - 1 IS - 1 PB - Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal UR - https://ambp.centre-mersenne.org/item/AMBP_1994__1_1_21_0/ LA - en ID - AMBP_1994__1_1_21_0 ER -
%0 Journal Article %A S.D. Bajpai %T Generating function and orthogonality property of a class of polynomials occurring in quantum mechanics %J Annales mathématiques Blaise Pascal %D 1994 %P 21-26 %V 1 %N 1 %I Laboratoires de Mathématiques Pures et Appliquées de l'Université Blaise Pascal %U https://ambp.centre-mersenne.org/item/AMBP_1994__1_1_21_0/ %G en %F AMBP_1994__1_1_21_0
S.D. Bajpai. Generating function and orthogonality property of a class of polynomials occurring in quantum mechanics. Annales mathématiques Blaise Pascal, Tome 1 (1994) no. 1, pp. 21-26. https://ambp.centre-mersenne.org/item/AMBP_1994__1_1_21_0/
1. : Special Functions for Engineers and Applied mathematicians, Macmillan Publishing Co., New York (1985). | MR
2. : Generating function of a new class of polynomilas and its applications, Bull. Math. Assoc. India, Vol. 23 (1992), 59 - 71. | MR
3. , and : Generalized Hypergeometric Functioins with Applications in Statistics and Physical Sciences, Lectures Notes in Mathematics, number 348, Springer-Verlag, Heidelberg (1973). | Zbl | MR
4. : Hypergeometric Functions and their Applications, Springer-Verlag, New York (1991). | Zbl | MR
5. : Orthogonal polynomials, Amer. Math. Soc., Colloq. Publ., Vol. 23, (4th Edn.) Providence, Rhode Island (1985).
