Representation of a gauge group as motions of a Hilbert space
Clara Lucía Aldana Domínguez
Annales Mathématiques Blaise Pascal, Volume 11 (2004) no. 2, p. 131-153

This is a survey article based on the author’s Master thesis on affine representations of a gauge group. Most of the results presented here are well-known to differential geometers and physicists familiar with gauge theory. However, we hope this short systematic presentation offers a useful self-contained introduction to the subject.

In the first part we present the construction of the group of motions of a Hilbert space and we explain the way in which it can be considered as a Lie group. The second part is about the definition of the gauge group, 𝔊 P , associated to a principal bundle, P. In the third part we present the construction of the Hilbert space where the representation takes place. Finally, in the fourth part, we show the construction of the representation and the way in which this representation goes to the set of connections associated to P.

@article{AMBP_2004__11_2_131_0,
     author = {Aldana Dom\'\i nguez, Clara Luc\'\i a},
     title = {Representation of a gauge group as motions of a Hilbert space},
     journal = {Annales Math\'ematiques Blaise Pascal},
     publisher = {Annales math\'ematiques Blaise Pascal},
     volume = {11},
     number = {2},
     year = {2004},
     pages = {131-153},
     doi = {10.5802/ambp.189},
     mrnumber = {2109604},
     zbl = {1077.58006},
     language = {en},
     url = {https://ambp.centre-mersenne.org/item/AMBP_2004__11_2_131_0}
}
Aldana Domínguez, Clara Lucía. Representation of a gauge group as motions of a Hilbert space. Annales Mathématiques Blaise Pascal, Volume 11 (2004) no. 2, pp. 131-153. doi : 10.5802/ambp.189. https://ambp.centre-mersenne.org/item/AMBP_2004__11_2_131_0/

[1] R. Abraham; J.E. Marsden; J Ratiu Manifolds, Tensor Analysis and Applications, Springer-Verlag, New York (1988) | MR 960687 | Zbl 0875.58002

[2] S. Albeverio; S. R. Høegh-Krohn; D. Testard Irreducibility and reducibility for the energy representation of the group of mappings of a riemannian manifold into a compact semisimple Lie group, Journal of Functional Analysis, Tome 41 (1981), pp. 378-396 | Article | MR 619959 | Zbl 0488.22038

[3] M. F. Atiyah; R. Bott The Yang-Mills Equations over Riemann Surfaces, Phil. Trans. R. Soc. Lond. A, Tome 308 (1982), pp. 523-615 | MR 702806 | Zbl 0509.14014

[4] E. Binz; J. Sniatycki; H. Fischer Geometry of Classical Fields, North-Holland, Amsterdam (1988) | MR 972499 | Zbl 0675.53065

[5] J. Dieudonné Treatise on Analysis, Academic Press, New York Tome IV (1974) | MR 362066 | Zbl 0292.58001

[6] J. Dieudonné Treatise on Analysis, Academic Press, New York Tome V (1977) | Zbl 0418.22007

[7] D. S. Freed; K. K. Uhlenbeck Instantons and Four-Manifolds, Springer-Verlag, New York (1984) | MR 757358 | Zbl 0559.57001

[8] I. M. Gelfand; M. I. Graev; A. Vershik Representation of the group of smooth mappings of a manifold X into a compact Lie group, Compositio Math, Tome 35, Fasc. 3 (1977), pp. 299-334 | Numdam | Zbl 0368.53034

[9] I. M. Gelfand; M. I. Graev; A. Vershik Representation of the group of functions taking values in a compact Lie group, Compositio Math, Tome 42, Fasc. 2 (1981), pp. 217-243 | Numdam | Zbl 0449.22019

[10] R. S. Huerfano Unitary Representations of Gauge Groups (1996) (Ph.D. thesis, University of Massachusetts)

[11] A. Knapp Lie Groups Beyond an Introduction, Birkhäuser, New York (1996) | MR 1399083 | Zbl 0862.22006

[12] S. Kobayashi; K. Nomizu Foundations of Differential Geometry, John Wiley & Sons, Inc, United States of America Tome 1 (1996)

[13] A. Kriegl; P. W. Michor The Convenient Setting of Global Analysis, American Mathematical Society, United States of America (1997) | MR 1471480 | Zbl 0889.58001

[14] A. Kriegl; P. W. Michor Regular infinite dimensional Lie groups, Journal of Lie Theory, Tome 7 (1997), pp. 61-99 | MR 1450745 | Zbl 0893.22012

[15] S. Lang Differential and Riemannian Manifolds, Springer-Verlag, New York (1995) | MR 1335233 | Zbl 0824.58003

[16] J. A. Leslie On a Differential Structure for the Group of Diffeomorphism, Topology, Tome 6 (1967), pp. 263-271 | Article | MR 210147 | Zbl 0147.23601

[17] P. Libermann; C. Marle Symplectic Geometry and Analytical Mechanics, D. Reidel Publishing Company, Dordrecht, Holland (1987) | MR 882548 | Zbl 0643.53002

[18] K. B. Marate; G. Martucci The geometry of gauge fields, Journal of Geometry and Physics, Tome Vol. 6, N.3 (1989) | Zbl 0679.53023

[19] J. Mickelsson Current Algebras and Groups, Plenum Monographs in Nonlinear Physics, New York (1989) | MR 1032521 | Zbl 0726.22015

[20] H. Omori Infinite-Dimensional Lie Groups, Translations of Mathematical Monographs. American Mathematical Society, United States of America (1984) (Original published in Japanese by Kinokuniya Co., Ltd., Tokyo, 1979) | MR 1421572 | Zbl 0871.58007

[21] H. Omori; Y. Maeda On Regular Fréchet-Lie Groups IV, Tokyo J. Math, Tome 5 No. 2 (1981)

[22] A. L. Onishchik; E. B. Vinberg Lie Groups and Algebraic Groups, Springer-Verlag, Berlin (1990) | MR 1064110 | Zbl 0722.22004

[23] R. Palais Seminar on the Atiyah-Singer Index Theorem, Princeton University Press (1965) | MR 198494 | Zbl 0137.17002

[24] A. Pressley; G. Segal Loop Groups, Oxford University Press, New York (1986) | MR 900587 | Zbl 0618.22011

[25] W. Rudin Functional Analysis, McGraw-Hill, Singapore (1991) | MR 1157815 | Zbl 0867.46001

[26] F. Treves Topological Vector Spaces, Distributions and Kernels, Academis Press, INC, New York (1973) | MR 225131

[27] N. R. Wallach On the irreducibility and inequivalence of unitary representations of gauge groups, Compositio Mathematica, Tome 64 (1987), pp. 3-29 | Numdam | MR 911356 | Zbl 0632.22014