Let be a symmetric random matrix whose -scaled entries are uniformly square integrable. We prove that if the entries of can be partitioned into independent subsets each of size , then the empirical eigenvalue distribution of , minus its mean, converges weakly to in probability; hence if the averaged empirical eigenvalue distribution converges to a law, the empirical spectral distribution converges to this limit law weakly in probability. If the entries are bounded, the convergence is almost sure; if the entries are Gaussian, we prove almost sure convergence with larger blocks of size . This significantly extends the best previously known results on convergence of eigenvalues for matrices with correlated entries, where the partition subsets are blocks and of size . We also prove the strongest known convergence results for eigenvalues of band matrices.
We prove these results by developing a new log-Sobolev inequality which generalizes the second author’s introduction of mollified log-Sobolev inequalities: we show that if is a bounded random vector and is a standard normal random vector independent from , then the law of satisfies a log-Sobolev inequality for all , and we give bounds on the optimal log-Sobolev constant.
Todd Kemp 1 ; David Zimmermann 
@article{AMBP_2020__27_2_207_0, author = {Todd Kemp and David Zimmermann}, title = {Random matrices with log-range correlations, and {log-Sobolev} inequalities}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {207--232}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {27}, number = {2}, year = {2020}, doi = {10.5802/ambp.396}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.396/} }
TY - JOUR AU - Todd Kemp AU - David Zimmermann TI - Random matrices with log-range correlations, and log-Sobolev inequalities JO - Annales mathématiques Blaise Pascal PY - 2020 SP - 207 EP - 232 VL - 27 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.396/ DO - 10.5802/ambp.396 LA - en ID - AMBP_2020__27_2_207_0 ER -
%0 Journal Article %A Todd Kemp %A David Zimmermann %T Random matrices with log-range correlations, and log-Sobolev inequalities %J Annales mathématiques Blaise Pascal %D 2020 %P 207-232 %V 27 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.396/ %R 10.5802/ambp.396 %G en %F AMBP_2020__27_2_207_0
Todd Kemp; David Zimmermann. Random matrices with log-range correlations, and log-Sobolev inequalities. Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 2, pp. 207-232. doi : 10.5802/ambp.396. https://ambp.centre-mersenne.org/articles/10.5802/ambp.396/
[1] An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, 2010, xiv+492 pages | MR | Zbl
[2] A CLT for a band matrix model, Probab. Theory Relat. Fields, Volume 134 (2006) no. 2, pp. 283-338 | DOI | MR | Zbl
[3] On the asymptotic distribution of block-modified random matrices, J. Math. Phys., Volume 57 (2016) no. 1, 015216, 25 pages | DOI | MR | Zbl
[4] Necessary and sufficient conditions for almost sure convergence of the largest eigenvalue of a Wigner matrix, Ann. Probab., Volume 16 (1988) no. 4, pp. 1729-1741 | MR | Zbl
[5] L’hypercontractivité et son utilisation en théorie des semigroupes, Lectures on probability theory (Saint-Flour, 1992) (Lecture Notes in Mathematics), Volume 1581, Springer, 1994, pp. 1-114 | DOI | MR | Zbl
[6] On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New trends in stochastic analysis (Charingworth, 1994), World Scientific, 1997, pp. 43-75 | MR
[7] A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case, Electron. Commun. Probab., Volume 13 (2008), pp. 60-66 | DOI | MR | Zbl
[8] Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84 (Lecture Notes in Mathematics), Volume 1123, Springer, 1985, pp. 177-206 | DOI | Numdam | MR | Zbl
[9] A logarithmic Sobolev form of the Li-Yau parabolic inequality, Rev. Mat. Iberoam., Volume 22 (2006) no. 2, pp. 683-702 | DOI | MR | Zbl
[10] Asymptotic eigenvalue distributions of block-transposed Wishart matrices, J. Theor. Probab., Volume 26 (2013) no. 3, pp. 855-869 | DOI | MR | Zbl
[11] Block-modified Wishart matrices and free Poisson laws, Houston J. Math., Volume 41 (2015) no. 1, pp. 113-134 | MR | Zbl
[12] Functional inequalities for Gaussian convolutions of compactly supported measures: explicit bounds and dimension dependence, Bernoulli, Volume 24 (2018) no. 1, pp. 333-353 | DOI | MR | Zbl
[13] Some connections between isoperimetric and Sobolev-type inequalities, Mem. Am. Math. Soc., Volume 129 (1997) no. 616, p. viii+111 | DOI | MR | Zbl
[14] From Brunn–Minkowski to Brascamp–Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., Volume 10 (2000) no. 5, pp. 1028-1052 | DOI | MR | Zbl
[15] Modified logarithmic Sobolev inequalities in discrete settings, J. Theor. Probab., Volume 19 (2006) no. 2, pp. 289-336 | DOI | MR | Zbl
[16] On the density of states of random band matrices, Mat. Zametki, Volume 50 (1991) no. 6, pp. 31-42 | DOI | MR | Zbl
[17] Spectral measure of large random Hankel, Markov and Toeplitz matrices, Ann. Probab., Volume 34 (2006) no. 1, pp. 1-38 | DOI | MR | Zbl
[18] Wigner’s semicircle law for band random matrices, Random Oper. Stoch. Equ., Volume 1 (1993) no. 1, pp. 15-21 | DOI | MR | Zbl
[19] A note on Talagrand’s transportation inequality and logarithmic Sobolev inequality, Probab. Theory Relat. Fields, Volume 148 (2010) no. 1-2, pp. 285-304 | DOI | MR | Zbl
[20] Explicit constants for Gaussian upper bounds on heat kernels, Am. J. Math., Volume 109 (1987) no. 2, pp. 319-333 | DOI | MR | Zbl
[21] Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1990, x+197 pages | MR
[22] Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians, J. Funct. Anal., Volume 59 (1984) no. 2, pp. 335-395 | DOI | MR | Zbl
[23] Logarithmic Sobolev inequalities for finite Markov chains, Ann. Appl. Probab., Volume 6 (1996) no. 3, pp. 695-750 | DOI | MR
[24] Random Matrices with Independent Diagonals (in preparation)
[25] A phase transition for the limiting spectral density of random matrices, Electron. J. Probab., Volume 18 (2013), 17, 17 pages | DOI | MR | Zbl
[26] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | DOI | MR
[27] Herbst inequalities for supercontractive semigroups, J. Math. Kyoto Univ., Volume 38 (1998) no. 2, pp. 295-318 | DOI | MR | Zbl
[28] Large random matrices: lectures on macroscopic asymptotics, Lecture Notes in Mathematics, 1957, Springer, 2009, xii+294 pages (Lectures from the 36th Probability Summer School held in Saint-Flour, 2006) | DOI | MR | Zbl
[29] Lectures on logarithmic Sobolev inequalities, Séminaire de Probabilités, XXXVI (Lecture Notes in Mathematics), Volume 1801, Springer, 2003, pp. 1-134 | DOI | MR
[30] The variation of the spectrum of a normal matrix, Duke Math. J., Volume 20 (1953), pp. 37-39 | DOI | MR | Zbl
[31] Logarithmic Sobolev inequalities and stochastic Ising models, J. Stat. Phys., Volume 46 (1987) no. 5-6, pp. 1159-1194 | DOI | MR | Zbl
[32] Spectrum of random Toeplitz matrices with band structure, Electron. Commun. Probab., Volume 14 (2009), pp. 412-421 | DOI | MR | Zbl
[33] Isoperimetry and Gaussian analysis, Lectures on probability theory and statistics (Saint-Flour, 1994) (Lecture Notes in Mathematics), Volume 1648, Springer, 1996, pp. 165-294 | DOI | MR | Zbl
[34] The concentration of measure phenomenon, Mathematical Surveys and Monographs, 89, American Mathematical Society, 2001, x+181 pages | DOI | MR | Zbl
[35] A remark on hypercontractivity and tail inequalities for the largest eigenvalues of random matrices, Séminaire de Probabilités XXXVII (Lecture Notes in Mathematics), Volume 1832, Springer, 2003, pp. 360-369 | DOI | MR | Zbl
[36] Distribution of eigenvalues of real symmetric palindromic Toeplitz matrices and circulant matrices, J. Theor. Probab., Volume 20 (2007) no. 3, pp. 637-662 | DOI | MR | Zbl
[37] On slow-fading MIMO systems with nonseparable correlation, IEEE Trans. Inf. Theory, Volume 54 (2008) no. 2, pp. 544-553 | DOI | MR | Zbl
[38] Random Gaussian band matrices and freeness with amalgamation, Int. Math. Res. Not., Volume 1996 (1996) no. 20, pp. 1013-1025 | DOI | MR | Zbl
[39] Some inequalities satisfied by the quantities of information of Fisher and Shannon, Inform. and Control, Volume 2 (1959), pp. 101-112 | DOI | MR | Zbl
[40] Topics in optimal transportation, Graduate Studies in Mathematics, 58, American Mathematical Society, 2003, xvi+370 pages | DOI | MR | Zbl
[41] Functional inequalities for convolution probability measures, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 52 (2016) no. 2, pp. 898-914 | DOI | MR | Zbl
[42] Characteristic vectors of bordered matrices with infinite dimensions, Ann. Math., Volume 62 (1955), pp. 548-564 | DOI | MR | Zbl
[43] On the distribution of the roots of certain symmetric matrices, Ann. Math., Volume 67 (1958), pp. 325-327 | DOI | MR | Zbl
[44] Logarithmic Sobolev inequality for lattice gases with mixing conditions, Commun. Math. Phys., Volume 181 (1996) no. 2, pp. 367-408 | MR | Zbl
[45] Logarithmic Sobolev inequality for generalized simple exclusion processes, Probab. Theory Relat. Fields, Volume 109 (1997) no. 4, pp. 507-538 | DOI | MR | Zbl
[46] Dobrushin uniqueness theorem and logarithmic Sobolev inequalities, J. Funct. Anal., Volume 105 (1992) no. 1, pp. 77-111 | DOI | MR | Zbl
[47] Logarithmic Sobolev inequalities for mollified compactly supported measures, J. Funct. Anal., Volume 265 (2013) no. 6, pp. 1064-1083 | DOI | MR | Zbl
[48] Elementary proof of logarithmic Sobolev inequalities for Gaussian convolutions on , Ann. Math. Blaise Pascal, Volume 23 (2016) no. 1, pp. 129-140 | DOI | MR | Zbl
Cité par Sources :