[Structure et bases des suites d’espaces modulaires ]
Le discriminant modulaire est connu pour structurer la famille de formes modulaires de niveau 1, . Pour tout entier , nous définissons une unité modulaire forte de niveau notée , qui permet de structurer la famille de manière identique. Nous appliquerons ce résultat à la recherche de bases pour chacun des espaces .
The modular discriminant is known to structure the sequence of modular forms of level . For any positive integer , we define a strong modular unit of level which enables us to structure the sequence in an identical way. We then apply this novel result to the search of bases for each of the spaces.
Keywords: modular forms, modular units, Dedekind eta function
Mot clés : formes modulaires, unités modulaires, fonction de Dedekind
Jean-Christophe Feauveau 1
@article{AMBP_2020__27_2_181_0, author = {Jean-Christophe Feauveau}, title = {Structure and bases of modular spaces sequences $(M_{2k}(\Gamma _0(N)))_{k\in \protect \mathbb{N}^*}$}, journal = {Annales math\'ematiques Blaise Pascal}, pages = {181--206}, publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal}, volume = {27}, number = {2}, year = {2020}, doi = {10.5802/ambp.395}, language = {en}, url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.395/} }
TY - JOUR AU - Jean-Christophe Feauveau TI - Structure and bases of modular spaces sequences $(M_{2k}(\Gamma _0(N)))_{k\in \protect \mathbb{N}^*}$ JO - Annales mathématiques Blaise Pascal PY - 2020 SP - 181 EP - 206 VL - 27 IS - 2 PB - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal UR - https://ambp.centre-mersenne.org/articles/10.5802/ambp.395/ DO - 10.5802/ambp.395 LA - en ID - AMBP_2020__27_2_181_0 ER -
%0 Journal Article %A Jean-Christophe Feauveau %T Structure and bases of modular spaces sequences $(M_{2k}(\Gamma _0(N)))_{k\in \protect \mathbb{N}^*}$ %J Annales mathématiques Blaise Pascal %D 2020 %P 181-206 %V 27 %N 2 %I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal %U https://ambp.centre-mersenne.org/articles/10.5802/ambp.395/ %R 10.5802/ambp.395 %G en %F AMBP_2020__27_2_181_0
Jean-Christophe Feauveau. Structure and bases of modular spaces sequences $(M_{2k}(\Gamma _0(N)))_{k\in \protect \mathbb{N}^*}$. Annales mathématiques Blaise Pascal, Tome 27 (2020) no. 2, pp. 181-206. doi : 10.5802/ambp.395. https://ambp.centre-mersenne.org/articles/10.5802/ambp.395/
[1] Modular functions and Dirichlet series in number theory, Graduate Texts in Mathematics, 41, Springer, 1976 | MR | Zbl
[2] A first course in modular forms, Graduate Texts in Mathematics, 228, Springer, 2005 | MR | Zbl
[3] Multiplicative properties of -products, Number Theory, Madras 1987 (Lecture Notes in Mathematics), Volume 1395 (1989), pp. 173-200 | DOI | MR | Zbl
[4] Eta products and theta series identities, Springer Monographs in Mathematics, Springer, 2011 | Zbl
[5] Courbes modulaires de genre 1, Bull. Soc. Math. Fr., Volume 103 (1975) no. 3, pp. 5-80 (Suppl., Mémoire 43) | Numdam | MR | Zbl
[6] Modular forms, Springer Monographs in Mathematics, Springer, 2006 | MR | Zbl
[7] Construction and application of a class of modular functions, Proc. Lond. Math. Soc., Volume 7 (1957), pp. 334-350 | DOI | MR | Zbl
[8] Construction and application of a class of modular functions II, Proc. Lond. Math. Soc., Volume 9 (1959), pp. 373-387 | DOI | MR | Zbl
[9] The web of modularity: arithmetic of the coefficients of modular forms and -series, CBMS Regional Conference Series in Mathematics, 102, American Mathematical Society, 2004 | MR
[10] The Ramanujan identities under modular substitutions, Trans. Am. Math. Soc., Volume 51 (1942), pp. 609-636 | DOI | MR | Zbl
[11] Cours d’arithmétique, Le Mathématicien, 2, Presses Universitaires de France, 1970 | Zbl
[12] Modular forms, a computational approach, Graduate Studies in Mathematics, 79, American Mathematical Society, 2007 | MR | Zbl
Cité par Sources :