Isoperimetric stability of boundary barycenters in the plane
[Stabilité isopérimétrique des barycentres de frontière dans le plan]
Annales mathématiques Blaise Pascal, Tome 26 (2019) no. 1, pp. 67-80.

Considérons un domaine planaire ouvert D dont le déficit isopérimétrique est plus petit que 1. Cette note montre que la différence entre le barycentre de D et celui de sa frontière est majoré en norme par le déficit isopérimétrique à la puissance 1/4, à une constante multiplicative près. Cette puissance peut être améliorée en 1/2 quand D est de plus supposé être convexe, dans tout espace euclidien de dimension au moins 2.

Consider an open domain D on the plane, whose isoperimetric deficit is smaller than 1. This note shows that the difference between the barycenter of D and the barycenter of its boundary is bounded above by a constant times the isoperimetric deficit to the power 1/4. This power can be improved to 1/2, when D is furthermore assumed to be a convex domain, in any Euclidean space of dimension larger than 2.

Publié le :
DOI : 10.5802/ambp.383
Classification : 51M04, 51M25, 51M16, 52A20, 52A40, 41A25
Keywords: Isoperimetric inequality on the plane, isoperimetric deficit, boundary barycenter, convex domains, isoperimetric stability
Mot clés : Inégalité isopérimétrique planaire, déficit isopérimétrique, barycentre de frontière, domaines convexes, stabilité isopérimétrique

Laurent Miclo 1

1 Institut de Mathématiques de Toulouse, UMR 5219 Toulouse School of Economics, UMR 5314 Université de Toulouse and CNRS 118, route de Narbonne 31062 Toulouse Cedex 9 FRANCE
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AMBP_2019__26_1_67_0,
     author = {Laurent Miclo},
     title = {Isoperimetric stability of boundary barycenters in the plane},
     journal = {Annales math\'ematiques Blaise Pascal},
     pages = {67--80},
     publisher = {Universit\'e Clermont Auvergne, Laboratoire de math\'ematiques Blaise Pascal},
     volume = {26},
     number = {1},
     year = {2019},
     doi = {10.5802/ambp.383},
     zbl = {07092135},
     language = {en},
     url = {https://ambp.centre-mersenne.org/articles/10.5802/ambp.383/}
}
TY  - JOUR
AU  - Laurent Miclo
TI  - Isoperimetric stability of boundary barycenters in the plane
JO  - Annales mathématiques Blaise Pascal
PY  - 2019
SP  - 67
EP  - 80
VL  - 26
IS  - 1
PB  - Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
UR  - https://ambp.centre-mersenne.org/articles/10.5802/ambp.383/
DO  - 10.5802/ambp.383
LA  - en
ID  - AMBP_2019__26_1_67_0
ER  - 
%0 Journal Article
%A Laurent Miclo
%T Isoperimetric stability of boundary barycenters in the plane
%J Annales mathématiques Blaise Pascal
%D 2019
%P 67-80
%V 26
%N 1
%I Université Clermont Auvergne, Laboratoire de mathématiques Blaise Pascal
%U https://ambp.centre-mersenne.org/articles/10.5802/ambp.383/
%R 10.5802/ambp.383
%G en
%F AMBP_2019__26_1_67_0
Laurent Miclo. Isoperimetric stability of boundary barycenters in the plane. Annales mathématiques Blaise Pascal, Tome 26 (2019) no. 1, pp. 67-80. doi : 10.5802/ambp.383. https://ambp.centre-mersenne.org/articles/10.5802/ambp.383/

[1] Tommy Bonnesen Sur une amélioration de l’inégalité isopérimetrique du cercle et la démonstration d’une inégalité de Minkowski, C. R. Math. Acad. Sci. Paris, Volume 172 (1921), pp. 1087-1089 | Zbl

[2] Yury D. Burago; Viktor A. Zalgaller Geometric inequalities, Grundlehren der Mathematischen Wissenschaften, 285, Springer, 1988, xiv+331 pages (Translated from the Russian by A. B. Sosinskiĭ) | DOI | MR | Zbl

[3] Kolélè Coulibaly-Pasquier; Laurent Miclo On the evolution by duality of domains on manifolds (2019) (https://hal.archives-ouvertes.fr/hal-02009885/file/evolving.pdf)

[4] Nicola Fusco The quantitative isoperimetric inequality and related topics, Bull. Math. Sci., Volume 5 (2015) no. 3, pp. 517-607 | DOI | MR | Zbl

[5] Nicola Fusco; Vesa Julin A strong form of the quantitative isoperimetric inequality, Calc. Var. Partial Differ. Equ., Volume 50 (2014) no. 3-4, pp. 925-937 | DOI | MR | Zbl

[6] Nicola Fusco; Francesco Maggi; Aldo Pratelli The sharp quantitative isoperimetric inequality, Ann. Math., Volume 168 (2008) no. 3, pp. 941-980 | DOI | MR | Zbl

Cité par Sources :